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It’s a dangerous business, going out your door.
You step onto the road, and if you don’t keep your feet,

there’s no telling where you might be swept off to.

— J. R. R. Tolkien, “The Fellowship of the Ring”
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I N T R O D U C T I O N

M
etrology is the science of measurement, embracing both experimental and

theoretical determinations at any level of uncertainty in any field of science
and technology1. It has its roots as far back as Ancient Egypt, where the

success of the large construction projects of the time relied on consistent measurements.
This was achieved by standard rods of equal length – the royal cubit, the earliest attested
standard measure for length.

Throughout history the need to synchronize measurements was always present,
and so, many local standards and units appeared and disappeared all over the world.
However, up until the 18

th century there was no universal measurement system. This
was changed in 1795 with the creation of the decimal-based metric system in France
by the law “on weights and measures”. It followed the newly formed definition of the
metre as the length of one ten-millionth part of the distance from Earth’s equator to its
north pole – the first unit which in its determination was neither arbitrary nor related
to any particular nation on the globe. The adoption of the metric system expanded with
time, and, to ensure conformity between the different countries, the The International
Bureau of Weights and Measures (BIPM) was formed [1].

The metric system has evolved into the International System of Units, abbreviated as
SI from the French Système International d’unités. It consists of seven base units, which are
the second (time, s), metre (length, m), kilogram (mass, kg), ampere (electric current, A),
kelvin (thermodynamic temperature, K), mole (amount of substance, mol) and candela
(luminous intensity, cd). As of 2019, the magnitude of all SI units are defined by exact
numerical values for seven constants when expressed in terms of the corresponding SI

units. These are the speed of light in vacuum c, the hyperfine transition frequency of
caesium ∆νCs, the Planck constant h, the elementary charge e, the Boltzmann constant
k, the Avogadro constant NA, and the luminous efficacy Kcd. Except the seven base
units, there are 22 derived units with special names and symbols, which can also be
used. One of these units is the unit for radioactivity – the becquerel Bq. It corresponds
to the mean number of radioactive decays per unit time of a radioactive source. One
becquerel is equal to one decay per second [1].

The becquerel can be regarded a special unit, due to the nature of the radioactive
decay, which is the process by which unstable or excited nuclei lose energy by emission
of one or more subatomic particles. There is a large variety of possibilities for the type
of the emission resulting from a radioactive decay: β+ and β−, α-particles, neutrons,
fission products, X-rays and γ-rays, Auger electrons and neutrinos. Some radioactive
decays result in a single emission and some in a cascade of emissions, each of a different
type. Of the possible particles, there are some that have electric charge and some that are

1 Source: BIPM website (Archived)

1

https://web.archive.org/web/20110927012931/http://www.bipm.org/en/convention/wmd/2004/


2 introduction

neutral. Their masses span from the massless photons and almost-massless neutrinos
to the heavy α-particles and even heavier fission products. The effect of the emission
on the surrounding medium can be felt from micrometers to hundreds of meters.
Moreover, there is a huge variety in the radioactive isotopes themselves – from the
lightest elements to the heaviest nuclei – which can be found in numerous chemical
compounds and in all states of matter. For these reasons, there could be no single
universal realization of the standard for the becquerel unit. Thus, the standardization
techniques are usually specifically tailored to the radionuclide of interest.

One largely used measurement platform, however, is liquid scintillation (LS) counting
since many radionuclides can be incorporated into a mixture with a liquid scintilla-
tor. This provides a 4π geometry for detecting the emitted radiation and significantly
increases the detection efficiency. The exact variant of liquid scintillation detection tech-
nique used for primary standardization depends on the properties of the radionuclide.
For γ-ray emitting radionuclides, coincidence methods can be used to determine the
activity. For pure β, electron capture (EC) or mixed decays, the triple-to-double coin-
cidences ratio (TDCR) method is applied, which uses ratios of measured coincidences
to produce robust results. This is precisely the main focus of this thesis – the primary
standardization of radioactivity using the TDCR method, what are some well known or
newly discovered aspects of it, what difficulties are encountered and how they can be
solved.

structure of the dissertation

The thesis is structured in three parts and twelve chapters. The first part serves as an
overview of the field of radionuclide metrology using LS counting. The second and
third parts contain the original work in the scope of the thesis. A short overview of the
contents of each part is as follows:

In Part I, an overview of liquid scintillators and liquid scintillation counting in general
are given. The emphasis is placed on radioactivity standardization methods and the
TDCR method in particular.

Part II focuses on the time domain in LS counting and the distribution of the time
intervals between detected scintillations in a LS detector in particular. First, a program,
that has been developed for the analysis of digitizer list-mode data, is presented in
Chapter 3. The following Chapter 4 describes a comparison of two algorithms to process
coincidences and dead-times in a detector with three photomultiplier tubes (PMTs).
Chapter 5 contains a derivation of the statistical distribution of the time intervals
between detected prompt fluorescence events. The derived equations were verified
using a dedicated Monte Carlo code, developed in the framework of the thesis and
presented shortly in Appendix A. It is shown how this distribution could be used
to estimate the detection efficiency in LS measurements using the free parameter
model. The next chapter, Chapter 6, deals exclusively with experimental studies on the
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derived equations and their application to real measurements. The possibility to use
the newly developed theory to supplement standardizations using the TDCR method is
discussed. Some applications of the time interval distributions to routine LS counting
measurements are also shown.

Part III focuses on how the information from the distribution of the time intervals
between detected events can be used in radionuclide metrology and the TDCR method
in particular. Chapter 7 presents methods for precise measurements of the half-life of
some nuclear excited states, namely the long-lived states in 57Co and 237Np, using LS

counting and analysis of the resulting time distributions. The time information from LS

measurements is utilized to develop an experimental method to evaluate the counting
rate of accidental coincidences in a TDCR detector is presented in Chapter 8. Besides the
experimental method, theoretical equations to evaluate the accidental coincidences are
also developed and verified in the same study. Chapter 9 deals with the influence of
the delayed fluorescence on the activity calculated by the TDCR method. The studies
demonstrate the problems encountered in the standardization of low-energy emitters
such as 3H and 55Fe. Chapter 10 shows the development and characterization of a new
Compton coincidences and TDCR (C-TDCR) system for primary standardization of LS

samples. The system was used to study the response of commercial liquid scintillators
to electrons with energies in the range from 2 keV to 8 keV. The possibility to use this
information in 3H standardizations is also discussed. Chapter 11 outlines some practical
applications of the TDCR method which are used in the “Metrology of Ionizing Radiation”
laboratory at Sofia University to ensure metrological assurance of LS measurements.

Finally, Chapter 12 contains a brief summary of what has been presented in the thesis
and highlights the important conclusions of the work. Some future directions for study
are also stated. Additionally, some complementary information and measurements are
shown in three appendices placed at the end of the thesis.





Part I

R A D I O N U C L I D E M E T R O L O G Y U S I N G L I Q U I D
S C I N T I L L AT I O N C O U N T I N G





1
L I Q U I D S C I N T I L L AT I O N C O U N T I N G

L
iquid scintillation counting is the measurement of the activity of a radioactive
material dissolved in a liquid scintillator by counting the rate of resulting
light pulses. The solution is usually contained in glass or polyethylene vials,

the common volumetric capacity being 20 ml. The scintillations coming from the vial
are then measured on purposefully designed detectors called liquid scintillation (LS)
counters. Most detectors are equipped with an optical chamber that houses the sample
during measurement and photomultiplier tubes (PMTs), that register the scintillation
events. The events are recorded for a certain time period and the counting rate of the
sample is given as an output. The detection efficiency ε gives the relationship between
the net (background corrected) counting rate n0 and the activity A, where

A =
n0
ε

. (1.1)

As the radioactive source is practically within the active volume of the detector,
the detection efficiency of LS measurements is relatively high. It is close to 100% for
α-emitting radionuclides and for high-energy β-emitting radionuclides. However, it
could be significantly lower for electron capture (EC) and low-energy β-emitters. For
such radionuclides the detection efficiency ε must be known with high accuracy in
order to calculate the activity of the source. A common way to measure the detection
efficiency is to calibrate the detector with a source with activity that is known with low
uncertainty and traceable to a primary standard. The calibration sources, however, are
also measured by LS counting to determine their activity. As the efficiency in that case
is unknown, a model of the light emission of the liquid scintillator and the detection
of that light by the PMTs is necessary. Such a model was developed in the 1980s by
Broda et al. and Malonda et al. [2, 3] based on previous works [4–6] and is called the
free parameter model. It is the basis of all methods currently employed in the field of
radionuclide metrology using LS counting1.

LS counting is especially suited for the detection and measurement of activity of pure
EC or β-emitters such as 3H, 14C, 55Fe, 63Ni and others2. Since the only emission from
such nuclides is a charged particle, their decay cannot be detected from a more than a
few centimeters if there is a medium between the source and detector. LS counting has
the advantage in that regard as the radionuclide is dissolved in a solvent that absorbs
the energy of the charged particles and transfers it to the scintillating molecules.

As usual in nature, the major advantage of LS counting comes with its own set of
drawbacks. As the source is dissolved in the LS, the preparation technique plays a

1 The free parameter model is described in depth in Section 2.1.
2 A more comprehensive list can be found in the last paragraph of this chapter.

7



8 liquid scintillation counting

major role in what would be the detection efficiency. Taking 3H for example, it usually
comes in the form of tritiated water, i. e., water molecules in which one of the 2H
atoms is replaced with 3H. In order to be possible to dissolve the water in the organic
liquid, the scintillation cocktails usually contain some form of surfactant. Depending
on the amount of water that is added to the liquid scintillator, its properties would
change, which in turn affects the detection efficiency. Moreover, in practice, the water
that is dissolved in the cocktail is taken from the environment and has to be purified
beforehand. Even if a strict procedure is followed, small fluctuations in the preparation
process will lead to LS samples with different detection efficiencies.

In this chapter a brief overview of all the components of a LS measurement will be
given.

1.1 liquid scintillators

Liquid scintillators are organic compounds that are developed to emit light when an
ionizing particle interacts with them. Most organic scintillators of practical interest
consist of aromatic molecules in which three of the valence electrons of carbon are
hybridized in the sp3 configuration and one p electron is left unchanged. The hy-
bridized electron orbitals are also known as σ electrons and their bonds as σ bonds.
This configuration of σ bonds forms the planar ring structure of benzene and other
aromatic hydrocarbons. The unchanged p electron orbitals are symmetric with respect
to the plane of the molecule and are called π electrons and their bonds – π bonds
respectively [7].

The σ hybridized electron orbitals interact with each other in such a way as to
produce localized C – H and C – C bonds. The π orbitals form delocalized molecular
orbitals – six in the case of benzene (see Figure 1.1). Similar systems of delocalized π
orbitals occur also in other aromatic molecules and their excited states are the reason
for the luminescence of these molecules. Moreover, the individual molecules are loosely
bound to one another by Van der Waals forces and due to that excitation in one
molecular can be easily transferred to another. The effect of the energy transfer is
important for liquid scintillators consisting of more than one type of molecule. In
the two component systems a small amount of very efficient scintillator (primary
fluorophore) is added to a large quantity of organic solvent. The solvent absorbs the
bulk of the energy dissipated in the solution, and, through interactions between the
molecules, the excitation energy can eventually reach one of the efficient scintillator’s
molecules which will lead to light emission with a high probability [8]. The emission
spectra of the primary fluorophore is usually in the range of UV light, where the
quantum efficiency of photomultiplier tubes is somewhat low. In order to improve the
efficiency of light detection a small amount of secondary scintillator is also added that
shifts the emission spectra to longer wavelengths. Such substances are called wavelength
shifters and are added in concentrations that are an order of magnitude lower than that
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σ-bonds

delocalizedπ-bonds

CH

sp3 hybridization

Figure 1.1: Schematic representation of a benzene molecule.

of the primary fluorophore. The energy transfer between the primary fluorophore and
the wavelength shifter is purely radiative.

The path that the energy takes – from the kinetic energy of the charged particle
passing through the scintillation cocktail to the luminescence photons emitted from it
– is a complex one. In fact, only a small fraction of the kinetic energy of the particle
is converted to fluorescent energy. The large remaining fraction is dissipated non-
radiatively as vibrational excitations or heat. As a charged particle with sufficient
energy passes through the mixture of scintillators, it leaves a trail of molecules with
π electrons in their excited states. The concentrations of the primary fluorophore and
the wavelength shifter are minuscule in comparison with the solvent thus it can be
considered to a good approximation that the charged particle interacts only with the
molecules of the solvent. The kinetic energy can be transferred to two types of excited
states, singlet or triplet, which is the basis of the two main types of fluorescence light
that is observed – prompt and delayed fluorescence.

Singlet ground
state

Singlet excited
state

Triplet excited
state

Figure 1.2: Electrons with paired (singlet) or unpaired (triplet) spins.
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A singlet state (Sn) is a molecular electronic state in which all electron spins are
paired, even on different energy levels. That is, the spin of an excited electron is still
paired with that of the ground state electron. As per the Pauli exclusion principle, a pair
of electrons on the same energy level must have opposite spins. In a triplet state the
excited electron is not paired with the ground state electron and their spins are parallel.
This is schematically shown in Figure 1.2. The origin of the term singlet comes from
the field of spectroscopy, and it reflects that systems with net zero angular momentum
emit photons with a single wavelength, i. e., a single line appear in the spectrum. This
is opposed to double and triple lines in doublet and triplet states respectively.
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Figure 1.3: Schematic representation of the photoluminescence pathways. The solid lines show
the path leading to prompt fluorescence and the dashed lines to delayed fluorescence.

The ratio of excited triplet states to excited singlet states, after the molecules of the
solvent have absorbed the kinetic energy of the passing particle, is 3:1 as there are
three times more available triplet states than singlet states. In a singlet state the spin
quantum number of the system is s = 0, and thus, there is only one allowed value
of the spin component, ms = 0. In a triplet state s = 1 and so ms could be −1, 0 or
+1. The fluorescent molecules are usually excited in their higher excited Sn and Tn
states, but they quickly recombine to S1 and T1 via internal conversion. It refers to a
transition from a higher to a lower electronic state without the emission of a photon
and the de-excitation energy is transformed into heat. The typical timescale of the
process is 10−10 to 10−11 s. Internal conversion happens between states with the same
multiplicity. The transitions between states of different multiplicity (e. g., Sn ←→ Tn)
are referred to as intersystem crossing [9].

Despite there being three times as much triplet compared to singlet states, the
radiative emission from T states is much rarer than for S states, because the de-excitation
from T1 to S1 is a forbidden transition. Molecules in the T1 state can still emit light,
after undergoing intersystem crossing to the S1 state. This is illustrated in Figure 1.3.

Prompt fluorescence, or simply fluorescence, is the emission of a photon from the
transition from the S1 excited state to the S0 ground state of a molecule. The life-
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time of the S1 state is in the order of a nanosecond to a few nanoseconds which is
long in comparison with the life-time of the vibrational Sn states for the molecule.
Their life-time is in the range of 10−12 s and so the molecule reaches thermodynamic
equilibrium before the emission that occurs from the S1 state. In other words, the
energy from the charged particle can be transferred to any of the singlet energy states
of the π electron S1,S2, · · · ,Sn, but the levels above S1 undergo rapid and effective
non-radiative transfers between adjacent excited states (internal converted). Thus, a
molecular Sn state is quickly converted to an S1 state via internal energy transfer
between states and the dissipation of remaining vibrational energy [7].

In the context of liquid scintillation counting, in the 1950s, it was seen that prompt
fluorescence cannot explain the total of scintillation light that was observed. According
to Birks [7], Voltz [10] and Wright [11] it is necessary to consider another distinct
component of the scintillation light. The second scintillation component results from
de-excitation of S1 states produced by T1 states after intersystem crossing. The Tn states
have a lower energy than the corresponding Sn states, due to the additional energy
that is “contained” in the de-coupled spins. Thus, in order for the T1 → S1 migration to
happen, some amount of energy that corresponds to the difference in the energies of
the two levels must be absorbed. Depending on the separation of the levels, this could
be thermal energy, and this process is called thermally activated delayed fluorescence. It is
the focus of ongoing research related to the manufacturing of highly efficient organic
light emitting diodes [12–14]. In the more commonly used organic scintillators, the
favored pathway is the triplet-triplet annihilation, i. e., bimolecular interaction between
molecules in the lowest excited triplet state T1 [7]. The probability for this process is
usually lower than for the prompt fluorescence due to the need for the interaction of
two molecules in the T1 state. The lower probability leads also to a lower emission
intensity. The process of triplet-triplet annihilation is also controlled by the diffusion of
excited states and is slower than the exponential de-excitation of S1, hence the name
delayed fluorescence.

In fact, the picture described in Figure 1.3 is very simplified. Commonly used
scintillators do not consist of only one specie (solvent), but also have a small amount
of a highly efficient fluorescent molecule (primary fluorophore) with its excited states
Fn. It is also possible to have some quantity of a quenching chemical Q that efficiently
absorbs excitation energy. Thus, there are many possible pathways that the absorbed
kinetic energy of the ionizing particle can take. Most of them (≈ 99%) lead to the
dissipation of the energy as heat. After the formation of the S1 and T1 states, at a
timescale of a few ns, the main energy transfer phenomena, that present practical
interest in the context of LS counting, can be summarized by the following equations3:

1. S1 → S0 or S1 + S0 → S0 + S0 de-excitation of singlets

2. S1 + S0 → S0 + S1 energy migration in the solvent
(can also involve excimer formation and dissociation [16])

3 They are the same mentioned by Voltz and Laustriat [15], but neglecting the reactions with low probability.
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3. S1 + Q→ S0 + Q chemical quenching of singlets

4. T1 → S0 de-excitation of triplets

5. T1 + Q→ S0 + Q chemical quenching of triplets

6. T1 + T1 → S1 + S0 annihilation triplet-triplet creating a singlet state

7. T1 + T1 → T1 + S0 annihilation triplet-triplet

8. S1 + F0 → F1 + S0 energy transfer to the fluorescent molecule (Förster process)

9. F1 → F0 + hν de-excitation of the fluorescent molecule and light emission

Inside a LS cocktail, the distribution of solvent molecules in their ground state S0,
molecules of the primary fluorophore F0 and molecules of the quencher Q is homoge-
neous. This is not the case for the excited states S1 and T1. They are localized in small
volumes around the track of the particle, especially at time scales of about 10−10 s. At
this stage, the higher excited states S2, S3, . . . , Sn can interact with one-another and
recombine non-radiatively [16]. According to Voltz and Laustriat [15], no significant bi-
molecular S1 + S1 → S0 + S0 happen in that time period4. The recombination process of
closely formed excited states is termed ionization quenching, and its prominence depends
on the local concentration of excitations – the higher the concentration, the more likely
it becomes. This introduces a dependence of the light output of the scintillator on the
stopping power. The ionization quenching phenomenon is central to LS measurements
and will be discussed in-depth later.

It should be noted that this ionization quenching phenomenon is not the same for
T1 species. For them the bimolecular reaction 7. is favored by the local concentration
of F1 states. This reaction is in competition with 6. which causes delayed fluorescence.
That is, for increased density of triplet excited states, the quenching of triplet states
becomes stronger, but, at the same time, the probability for triplet–triplet interaction
increases. Birks [7], noticed that: “The ionization quenching mainly affects the intensity
of the fast scintillation component, and has much less effect on the intensity of the slow
component”. This implies that the ionization quenching is not similar for the singlets
and triplets states.

The typical lifetime of S1 states is a few nanoseconds. This is much shorter than the
lifetime of T1 states, typically a few hundreds of ns, depending on the nature of the
solvent. The lifetime of F1 states is lower than a ns and generally the quantum yield of
equation 9. is high. The primary fluorescent molecule is very efficient and its radiative
de-excitation probability is close to one. The time dependence of the intensity of the
two scintillation components will be discussed in the next paragraphs.

4 The main argument supporting this assertion is that the ionization quenching does not affect S1 lifetime.



1.1 liquid scintillators 13

1.1.1 Time dependence of the scintillation intensity

The intensity of fluorescence in a single component scintillator decreases exponentially
with time following the law [7]:

I = I0e
−t/τ, (1.2)

where I0 is the initial light output at time t = 0 and τ is the fluorescence life-time. The
time dependence of the scintillation intensity of delayed fluorescence is significantly
more complex than that of the prompt as it is controlled by the diffusion process of
triplet states. A schematic representation of the time dependence of the two scintillation
components is shown in Figure 1.4.

Most scintillators of practical interest are two or three component systems with a
solvent, primary fluorophore and a wavelength shifter. For such systems the simple
exponential decay law from equation (1.2) will be an approximation. The scintillation
emission for the more complex systems has a finite rise time, due to the speed of the
energy transfer between the solvent and fluorophore. For a binary system the prompt
fluorescence scintillation intensity with time I(b)p (t) is given by [7]:

I
(b)
p (t) = n0

a
(r)
sf /τ

(r)
s + 1/τsf

1/τs − 1/τf

(
e−t/τf − e−t/τs

)
, (1.3)

where n0 is the initial number of excited solvent molecules, τf is the radiative decay
time of the fluorophore, τs is the non-radiative decay time of the solvent, τsf is the
non-radiative energy transfer time between the solvent and fluor, τ(r)s is the natural
radiative life-time of the solvent and a(r)sf is the probability that the emission of the
solvent will be absorbed by the fluorophore. The overall shape of equation (1.3) is an
exponential decay with a finite rise time, governed by the non-radiative decay time
of the solvent. The rise and decay time of the two component system depends on the
solvent and fluor molecules. For the common combination DIN + PPO5 the rise time is
in the order of 1 ns and the decay time between 2.5 and 7 ns [17].

Probably, the most comprehensive attempts to quantify the intensity of the delayed
component with time can be found in the work of King & Voltz [19]. In this work the
time dependence of delayed fluorescence is modeled with a diffusion kinetic equation
describing the local density of delayed singlet states c ′s(r, t):

δc ′s(r, t)
δt

= Ds∇2rc ′s(r, t) −
1

τs
c ′s(r, t) + kuc

2
T (r, t), (1.4)

where the term kuc
2
T (r, t) describes the production of delayed singlet states by the

bimolecular interaction between two T1 states. The equation is solved with the initial
condition that c ′s(r, 0) = 0. The initial distribution of the triplet states is derived for two
cases: one for particles with low stopping power for which the ionizations are far apart
and there is no interaction between them and two for particles with high linear energy

5 DIN + PPO stands for the mixture of diisopropyl naphthalene and 2,5-diphenyloxazole
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Figure 1.4: Schematic representation of the prompt and delayed emissions to the total scintilla-
tion light. Figure adapted from [18].

transfer for which the created ionizations are close to each other. The former case is
considered for electrons and the latter for α-particles and heavy ions. The solution of
equation (1.4) is derived after assumptions for Gaussian distribution of the excited
states along the particle track and for time t long enough so that the triplet relaxation
in the track is mainly diffusion controlled – i. e., after the triplet-triplet annihilation
seizes to be the dominant process. The solution given in the work of King & Voltz is:

I ′(t) = C
NT (0){

1+ td√
2ttt

[
1−

(
1+ t

td

)− 1
2

]}2 (
1+ t

td

) 3
2

, (1.5)

where td is the delayed fluorescence decay time, NT (0) is the initial concentration
of triplet states and ttt is the triplet-triplet annihilation relaxation time. Since ttt is
inversely proportional to dE/dx, for particles with low stopping power it could be

reasonable to assume that td√
2ttt

[
1−

(
1+ t

td

)− 1
2

]
� 1. Under such assumptions the

equation is reduced to:

I ′(t) =
M

(1+ t/td)
3
2

. (1.6)

It should be stressed, however, that this simplification should be reasonable only for t
that is long enough so that effects of the initial conditions are negligible. This excludes
the finite rise time of the delayed scintillation light.
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1.1.2 Ionization quenching

The density of the excitations produced in the scintillator depends on the linear energy
transfer of the particle. The higher the stopping power is, the higher the excitation den-
sity. This leads to decreased efficiency of the scintillator, an effect known as “ionization
quenching”, which is similar in all types of organic scintillators [7]. Due to it, the light
output of the scintillator depends on the linear energy transfer of the particles – it is
highest for high-energy electrons and lowest for α-particles and heavy nuclei. Moreover,
for a given particle, the intensity of the emitted light changes non-linearly with the
energy. There are a few attempts to describe the ionization quenching behaviour with
respect to the energy and type of particle.

The most widely used model is a semi-empirical formula proposed by Birks and is
known as Birks’ law [7]:

dI

dx
=

η0
dE
dx

1+ kBdEdx
, (1.7)

where x is the range of the particle in the scintillator, dE/dx is the stopping power of
the particle in the medium, η0 is the absolute scintillation efficiency, which is the ratio
of the sum of energies of all photons emitted during the scintillation event to the energy
released in the cocktail. The specific density of the ionized and excited molecules along
the trajectory of the particle is kBdEdx , where kB is the ionization quenching parameter
and is measured in units cm/MeV or µm/MeV. Birks’ law for the ionization quenching
was proposed as a description of the intensity of the prompt fluorescence. According
to Birks, the ionization quenching has much less effect on the intensity of the slow
component (see section 3.5 in [7]).

Equation (1.7) was generalized by Chou, introducing a term proportional to the
square of the stopping power [20]:

dI

dx
= A

dE

dx

[
1+B

dE

dx
+C

(
dE

dx

)2]−1
. (1.8)

Another expression was also proposed by Wright with the form [11]:

dI

dx
=
A

2B
ln
[
1+ 2B

dE

dx

]−1
. (1.9)

These equations were proposed for the description of the prompt fluorescence com-
ponent, largely disregarding the delayed fluorescence. An attempt to describe both
scintillation components was done by Voltz et al. The total scintillation intensity with
respect to the stopping power of electrons in a given medium is given as [10]:

dI

dx
= ηs

[
1

Ws

dE

dx
e−Bs

dE
dx +α

Φt

Wt

dE

dx
e−BtΦt

dE
dx

]
, (1.10)

where Ws and Wt are the mean energies required to produce a singlet S1 and a triplet
T1 states, respectively. Bs and Bt are quenching parameters for the prompt and delayed
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fluorescence and Φt is the part of the energy lost by the ionizing particle, per unit
path length, to activate triplet states of molecules that will participate in a triplet-triplet
interaction. Generally, the first summation term of the equation deals with the prompt
fluorescence and the second with the delayed fluorescence.

Equation (1.10) presents great interest as the expansion in powers of Bs dEdx , up to the
second order, resembles greatly the other proposed equations (1.7), (1.9) and (1.8). Thus,
it leads to similar results for the prompt fluorescence, but it also adds a description
of the delayed fluorescence. All equations, except for (1.7), are rarely used in practice,
because they introduce more unknown parameters. Thus, albeit possibly recognizing
only a part of the scintillation light, Birks’ law is the most commonly adopted model
describing the non-linearity of organic scintillators.

The fluorescence yield of the scintillator according to Birks’ law is given by

L(E) = η0

∫E
0

dE

1+ kB(dE/dx)
= η0EQ(E), (1.11)

where Q(E) is the ionization quenching function

Q(E) =
1

E

∫E
0

dE

1+ kB(dE/dx)
. (1.12)

There are some problems which arise when calculating Birks’ ionization quenching
function: the choice of an optimal value of the ionization quenching parameter kB,
calculation of the values of the stopping power for energies under 1 keV and the lack
of precise knowledge of the atomic composition and density of the used scintillator,
which are necessary for the calculation of the stopping power dE/dx.

The stopping power can be regarded as the force that acts on charged particles due
to its electromagnetic interactions with the surrounding matter that results in a loss
of the particle’s energy [21, 22]. dE/dx is defined as the average energy dissipated by
an ionizing particle per unit path length in a medium [23]. The stopping power of a
particle in a given material, in the case where its energy transfers are smaller than some
cut-off value Wc, can be calculated using the Bethe formula [24]:

dE

dx
=
2πr2emc

2

u

ρ

β2
Z

A
z2
[

ln
(
2mc2β2Wc

(1−β2)I2
−β2

)]
, (1.13)

where ρ denotes the density of the material in units g cm-3, u = 1.6605655× 10−24 is the
atomic mass unit, re is the classical electron radius, mc2 is the rest mass of the electron,
β is the velocity of the particle divided by the velocity of light, z is the projectile charge,
and I is the mean excitation energy of the medium. The equation is valid when the
velocity of the projectile is large compared to the velocities of the atomic electrons [25].

For electrons and positrons the stopping power in units MeV cm-1 can be calculated
using the formula given in the International Commission on Radiation Units (ICRU)
report №37 [25]:

dE

dx
=
2πr2emc

2

u

ρ

β2
Z

A

[
ln(E/I)2 + ln(1− τ/2) + F−(τ) − δ

]
, (1.14)
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where τ is the ration of the kinetic energy of the electron E to its rest mass, δ is a
density-effect correction which accounts for the reduction of the stopping power due to
the polarization of the medium. Here F−(τ) is given by:

F−(τ) = (1−β2)
[
1+ r2/8− (2r+ 1) ln 2

]
. (1.15)

Table 1.1: Compositions of some commercial scintillators produced by Perkin Elmer [26].

Cocktail C H N O P S Na
Density

g cm-3
Z/A

Molecular

weight

UltimaGold 16.81 24.54 0.040 1.52 0.11 0.02 0.02 0.98 0.5459 255.76

UltimaGold XR 18.11 29.80 0.035 2.83 0.11 0.03 0.03 0.99 0.5476 297.98

UltimaGold AB 18.67 28.49 0.010 2.53 0.01 0.00 0.00 0.98 0.5485 293.47

UltimaGold LLT 18.57 28.43 0.010 2.56 0.01 0.00 0.00 0.98 0.5486 292.68

InstaGel Plus 18.53 30.93 0.006 3.90 0.00 0.00 0.00 0.95 0.5490 315.71

HionicFluor 10.83 18.77 0.060 1.97 0.18 0.04 0.04 0.95 0.5449 188.87

Important parameters in equation (1.14) are the Z/A ratio and density ρ of the
medium. One practical problems is that if commercial LS cocktails are used, and such is
usually the case, the exact chemical composition is a trade secret. Fortunately, some
information is given by the manufacturers or can be found in the literature [27]. The
elemental composition for some commonly used cocktails produced by Perkin Elmer
are given in Table 1.1.

1.2 photomultiplier tubes

Another important component of the LS counting system is the detector of the fluo-
rescence light. Many kinds of light sensors exist, but the best suited for low-intensity
and low-noise applications, such as LS counting, is the photomultiplier tube (PMT). A
PMT is a vacuum tube that consists of a transparent window, a photocathode, focusing
electrodes, an electron multiplier and an anode [28]. The PMT is probably the most
important part of any LS detector system. It converts incident photons into electrical
signals via the following processes: photons pass through the transparent window and
excite electrons in the photocathode which are emitted in the vacuum; the photoelec-
trons are accelerated by the potential difference between the cathode and anode; they
are focused by the focusing electrodes onto the first dynode, where they are multiplied
via secondary electron emission; this process repeats at every dynode step; at the final
step, the secondary electrons that are emitted by the last dynode are collected at the
anode. A schematic representation of the construction of a PMT is shown in Figure 1.5.

PMTs have several important characteristics, in the context of LS counting, such as the
photocathode and window materials, the quantum efficiency, the current amplification
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Figure 1.5: Schematic representation of a construction of a PMT.

(gain), the dark current and the time characteristics. Photocathodes are usually made of
compound semiconductors which consist of alkali metals with a low work function [28].
An overview of the kinds of photocathodes currently employed in practical applications
is given in [28]. The most commonly used window material is borosilicate glass. The
preferred type for LS counting is that which contains reduced amount of potassium,
which has a long-lived radioactive isotope – 40K. More specialized UV transmitting
window materials are required for the purpose of detection of Čerenkov light. The
quantum efficiency εq is the ratio of the number of photoelectrons emitted from the
photocathode to the number of incident photons. It is generally expressed as percent and
typical values for PMTs used in LS applications are between 20% and 40%. Generally, the
higher the quantum efficiency, the better – especially in the case of three-PMT systems,
where the probability to register a triple coincidence is proportional to ε3q.

The amount of light that has to be detected in most LS counting applications is
very low – in the order of a few photons per keV energy released in the cocktail.
Therefore, single photon sensitivity is preferred in conventional LS counting. It is
mandatory, however, for its application to radioactivity metrology, as the used models
assume that the detection efficiency for single photons is not zero and that 100% of
the photoelectrons produce a detectable signal, i. e., significantly above the noise level.
Thus, the gain of PMTs used for metrological applications must be as high as possible
(> 106), while keeping the dark current and electrical noise low. The threshold of the
electronics that analyzes the PMT signals should be set in such a way that the electrical
noise is minimized while still preserving 100% of the single photoelectron signal. This
is achievable with PMTs that have a good separation between the two [29].

Often, when a pulse from a PMT is observed, it is followed by a series of smaller
parasitic pulses called afterpulses. They can be due to light that is emitted from one
of the dynodes that reaches the photocathode and produces further photoelectrons.
Another possible origin of afterpulses is the residual gas sometimes found in PMTs,
which can be ionized by the passage of electrons. The positive ions that are formed
can drift in the reverse direction and interact with the photocathode, thereby causing
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a new electron avalanche. In practice, in order to prevent the detection of afterpulses,
a dead-time of at least 10 µs is imposed after each detected signal or at the end of
each coincidence window. For the same reason, within a coincidence window in a
multple-PMT detector, only the first event that is detected from a given PMT is regarded
and all others are being ignored.

The important time characteristics of PMTs are the rise time, fall time and transient
time spread. Generally, the PMT is a photodetector with an exceptionally fast time
response. The rise time of a typical PMT pulse is in the order of 1–2 ns and the fall time
is two to three times larger than that [28]. The transient time spread is the distribution
of the time of generation of PMT pulses with respect to the single photons that generate
them. The typical full width at half-maximum (FWHM) for that distribution is 300 – 500

ps. The time characteristics of the used PMTs are usually of no concern in conventional
LS counting, but are very relevant when the precise timing of events is required6.

1.3 liquid scintillation counters

LS counters are detection systems consisting of two or more PMTs that are housed in an
optical chamber and are targeted towards a LS vial containing the sample of interest.
The optical chamber is a housing with reflective inner walls that is used to focus as
much of the light that is emitted from the sample as possible into the opening windows
of the PMTs, and, at the same time, to keep off ambient light so that it does not interfere
with the measurement.

As PMTs working in single photon mode are relatively noisy detectors, the signals
coming from a single PMT are not guaranteed to be connected to a scintillation burst
within the sample. For example, there may be also signals due to the termionic emission
of electrons from the photocathode. However, the scintillation light emitted by the
scintillator is isotropically distributed, and there are in the order of 10 photons per 1

keV energy released in the cocktail. Thus, there is a probability that the scintillation
light produced by an ionizing particle is detected simultaneously by the PMTs in the
system. Due to the finite decay constant of scintillation light, this detection will not
be simultaneous, but will be separated by some time. This requires that a certain
time interval is selected as the maximum interval between two events, for which they
are still considered to be coming from the same decay event. This time interval is
known as coincidence resolving time or coincidence window. In the framework of primary
radioactivity measurements using LS counting, the selection of the coincidence window
is not a trivial task7.

6 An example when PMTs with low transient time spread are needed will be given in Chapter 6.
7 Special attention to the problem is given in Chapter 9.
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1.4 applications of liquid scintillation counting

LS counting is a powerful technique for the measurement of ionizing radiation with
various practical applications. It finds use in many areas such as: radioactivity survey
in the environment or in nuclear facilities [30], radionuclides standardization [27], high
energy and neutrino physics [31], 14C dating [32], marine studies [33], environmental
studies and monitoring [4].

There are several methods for standardization of the activity of radioisotopes that
employ LS counting. The 4πβ− γ coincidence counting is a standardization method
which could be used for nuclides that have both β and γ emissions. However, it cannot
be used for pure β emitting radionuclides and requires a relatively sophisticated
setup with two different kinds of detectors. The CIEMAT/NIST efficiency tracing (CNET)
method, can be applied for the standardization of many nuclides and can be done on
a commercial LS counter. However, it is not purely a primary method as it relies on a
tracer nuclide, usually 3H, whose activity was determined beforehand by TDCR counting.
The TDCR method has been developed for the direct activity measurement of β and EC

radionuclides, including the radionuclides decaying towards the ground level of the
daughter [27]. It uses a statistical model which is applied to the counting rate data from
a LS system with three PMTs. These three methods can be used for the standardization
of the activity of many radioisotopes including, but not limited to: 3H [34], 11C [35],
14C [36], 18F [37, 38], 22Na [39], 32P [40], 33P [41], 35S [42], 41Ca [43], 63Ni [44, 45], 64Cu [46],
55Fe [47], 59Fe, [48], 67Ga [49], 68Ge/68Ga [50], 89Sr [51], 87Y [49], 90Y [52], 90Sr/90Y [53],
99Tc [54], 99mTc [55], 106Rh [51], 109Cd [56, 57], 110mAg [58], 123mTe [59], 124Sb [60], 124I [61],
129I [62], 131I [48, 60], 134Cs [63, 64], 139Ce [65], 153Sm [66, 67], 177Lu [68], 186Re [69, 70],
188W/188Re [71], 204Tl [72], 210Po [73], 222Rn [74], 223Ra [75, 76], 224Ra [77], 238Pu [78].
241Pu [45] and 241Am [60, 79]. 8

8 The list is not intended to be exhaustive.



2
R A D I O N U C L I D E M E T R O L O G Y U S I N G L I Q U I D S C I N T I L L AT I O N
C O U N T I N G

T
he detection efficiency for high-energy β-emitters and α-emitters in liquid scin-
tillation counting can be assumed to be 100% for all practical purposes [80].
This is not the case of low-energy β-emitters and some EC nuclides, where

the detection efficiency is less than 100% and can vary with measurement conditions.
In order to perform a precise absolute measurement of the activity of the source, the
detection efficiency must be known with high accuracy. It can be calculated by the
use of one particular model called the “free parameter” model, which is based on
the statistical description of phenomena occurring in the LS counter and is described
hereafter.

2.1 the free parameter model in ls

As a result of radioactive decay inside the liquid scintillation cocktail, an amount
of energy E is released, and the expected mean number of emitted photons can be
expressed as [27]:

m̄ =
η0Q(E)E

hν
, (2.1)

where hν is the mean photon energy and η0 is the absolute scintillation efficiency.
The function Q(E) takes into account that the fraction of the deposited energy that
is converted into scintillation light is not constant with the deposited energy, i. e., the
scintillator has non-linear response. If we assume that the number of emitted photons
is distributed according to the Poisson distribution with a mean value m̄, the number
of photons m emitted per decay is also Poisson distributed [27]:

p(m, m̄) =
m̄m

m!
e−m̄. (2.2)

Assume first, that there is one PMT that is used to register the scintillation light. The
emission of m photons from the scintillator leads to the detection of n̄ photons by the
PMT on average, i. e., emission of n̄ photoelectrons from its photocathode. Here n̄ can
be expressed by:

n̄ = m̄εqµξ, (2.3)

where ξ is a factor that takes into account the geometrical efficiency of the PMTs, εq is
the quantum efficiency of the PMT and µ is the spectral matching factor between the

21
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fluorescence spectrum of the scintillator and the absorption spectrum of the photocath-
ode. The mean number of photoelectrons n̄ produced by the emission of a particle with
energy E in the cocktail can be calculated from equations (2.1) and (2.3):

n̄ = m̄φ =
η0ξεqµ

hν
Q (E)E, (2.4)

where φ is the total efficiency of the PMT and is equal to the product of ξ, εq and µ. The
quantity of interest is the probability to detect a measurable signal, i. e., production of at
least one photoelectron, if there are m̄ photons emitted by the sample. The photoelectric
process in the photocathode can be described by the binomial distribution [27]:

b(n;m, εqµξ) =
m!

n!(m−n)!
(εqµξ)

m(1− εqµξ)
m−n, (2.5)

where b(n;m, εqµξ) is the probability thatm incident photons on the photocathode lead
to the emission of exactly n photoelectrons given that the quantum and geometrical
efficiency of the photomultiplier tube is εqµξ. We can express the probability for
emission of at least one photoelectron from the probability of emission of exactly zero
photoelectrons [27]:

pe(m) = 1− b (0;m, εqµξ) = 1− (1− εqµξ)
m , (2.6)

The probability PE, then, to detect a scintillation event in the case of m̄ emitted
photons on average is given by:

PE =

∞∑
m=0

p(m, m̄) [1− (1− εqµ)
m]

= 1−

∞∑
m=0

m̄m

m!
e−m̄(1− εqµ)

m

= 1−

{ ∞∑
m=0

[m̄(1− εqµξ)]
me−m̄(1−εqµξ)

m!

}
e−m̄

e−m̄(1−εqµξ)

= 1− e−m̄em̄(1−εqµξ) = 1− e−m̄εqµξ = 1− e−n̄ (2.7)

Thus, a cascade of three random processes abiding to: Poisson distribution (2.2), bino-
mial distribution (2.5) and multinomial distribution (2.8), can be resumed by only using
Poisson statistics for the mean number of photons emitted in the cocktail p(m, m̄) [27].

In the case of a detector with R photomultipliers, the number of photons incident on
each photomultiplier form a set {mi} which fulfills the criteria m = m1+m2+ · · ·+mR.
The probability Pd, for a given set {mi} to occur, is given by the multinomial distribution
[27]:

Pd =
1

Rm
m!

m1!m2! · · ·mR!
. (2.8)
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Combining equation (2.8) with the probability of the formation of a pulse from a given
type Px, we get the probability of m photons creating a detectable pulse:

PR(m) = PdPx

=
m!
Rm

m∑
m1=0

m−m1∑
m2=0

· · ·
mR∑

m−m1−···−mR−2

Px

m1!m2! · · ·mR−1!(m−m1 − · · ·−mR−1)!

(2.9)

The probability for the formation of different types of pulses Px, when there are n
incident photons on the photomultipliers, can be computed using equation (2.6). For
example, for two photomultipliers, A and B, working in coincidence, the probability
for the formation of a coincident impulse PABx with mA photons reaching PMT A and
mB = m−mA photons reaching PMT B is:

PABx = pe(mA)pe(mB)

= pe(mA)pe(m−mA)

= (1− (1− εqµξ)
mA) (1− (1− εqµξ)

m−mA)

(2.10)

Let us examine more thoroughly the case of a detector with two photomultipliers, A
and B, working in coincidence. In this case Px is given by equation (2.10). Substituting
in equation (2.9) we get the detection efficiency for a coincidence pulse with n incident
photons on the photocathodes of the two PMTs:

PABR =
m!
2m

n∑
mA=0

(1− pmA

0 )(1− pm−mA

0 )

mA!(m−mA)!
, (2.11)

where p0 = 1− εqµξ is the probability of emission of zero photoelectrons if there is a
photon incident on the photocathode. The detection probability P in the case of two
PMTs in coincidence is given by:

PAB = PE =

∞∑
m=1

p(m, m̄)

2m

m∑
mA=0

(
m

mA

)
(1− pmA

0 )(1− pm−mA

0 ) (2.12)

Developing the brackets in the second sum in (2.12) we get:

PAB =

∞∑
m=1

p(m, m̄)

2m

m∑
mA=0

(
m

mA

)(
1− pmA

0 − pm−mA

0 + pm0
)

(2.13)

For the calculation of the finite sums we use the binomial formula:

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k (2.14)
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We can separate equation (2.13) into four sums for which we get [81]:

m∑
mA=0

(
m

mA

)
= 2m

m∑
mA=0

(
m

mA

)
pmA

0 1m−mA = (1+ p0)
m = (2− εqµξ)

m = 2m
(
1−

εqµξ

2

)m
m∑

mA=0

(
m

mA

)
pm−mA

0 1mA = (1+ p0)
m = (2− εqµξ)

m = 2m
(
1−

εqµξ

2

)m
m∑

mA=0

(
m

mA

)
pm0 = 2mpm0 = 2m(1− εqµξ)

m

(2.15)

If we substitute the calculated finite sums in the right-hand member of equation (2.13)
we can derive the probability of counting PAB for two PMTs in coincidence:

PAB =

∞∑
m=0

m̄m

m!
em̄
{
1− 2

(
1−

εqµ

2

)m
+ (1− εqµ)

n
}
=

=

∞∑
m=0

m̄m

m!
e−m̄ −

∞∑
m=0

2
m̄m

m!
e−m̄

(
1−

εqµ

2

)m
+

∞∑
m=0

m̄m

m!
e−m̄(1− εqµ)

m =

= 1− 2e−m̄em̄(1−εqµ/2)
∞∑
m=0

p(m, m̄(1− εqµ/2) + e
−m̄em̄1−εqµ

∞∑
m=0

p(m, m̄(1− εqµ) =

= 1− 2e−m̄+m̄(1− εqµ

2 ) + e−m̄+m̄(1−εqµ) = 1− 2e−m̄εqµ/2 − e−m̄εqµ =

=
(
1− e−

m̄εqµ

2

)2
=
(
1− e−

n̄
2

)2
(2.16)

Equations (2.16) and (2.7) can be derived by the assumption of pure Poisson process de-
scribing the statistics of photoelectrons without considering a binomial distribution [81].
The counting probability of various kinds of pulses, created by monoenergetic particles,
are summarized in Table 2.1.

Using equations (2.7) and (2.16), the detection probability P of a LS counter with R
identical PMTs becomes

P = 1− e−n̄/R, (2.17)

where the mean number of photoelectrons created in all R PMTs is given by:

n̄ = EQ(E)ϕ. (2.18)

The free parameter ϕ introduced in (2.18) is the average number of photoelectrons
created at the photocathode of the PMT per unit effective energy effective energy (after
taking into account the ionization quenching function) released in the medium:

ϕ =
n̄

EQ(E)
=
Lξεqµ

hν
. (2.19)
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The free parameter is very frequently referred to as figure of merit (FOM). The prob-
ability of counting P is a function of the FOM ϕ and the energy of the particle. To
ensure the validity of the assumption that the detection probability follows a Poissonian
distribution, the detector must be constructed in such a way that the detection proba-
bility of one photoelectron is not zero. To achieve this in practice, the position of the
discriminator thresholds of each PMT must be just below the single-photoelectron peak.
Also, the geometrical efficiency of the PMTs should be constant for the entire volume of
the sample, i. e., the detection efficiency is the same irregardless of where in the volume
of the sample does a decay occur. This problem is addressed in [82].

Table 2.1: Detection probability for various kinds of pulses caused by monoenergetic particles in
a detector with R photomultipliers with identical and non-identical response. The Poisson non-
detection probability is p0 = e−n̄/R. The signals are either from a single PMT (no coincidence),
from two PMTs (with or without coincidence) or from three PMTs (no coincidence, double
coincidence or triple coincidence)

R Signal mode Coincidence Probability of counting P(E,ϕ)

Identical PMTs, pA = pB = pC = p0

1 A None 1− p0

2 A; B None 1− p0

AB Double (1− p0)
2

3 A; B; C None 1− p0

AB; BC; AC Double (1− p0)
2

T Triple (1− p0)
3

Non-identical PMTs, pA 6= pB 6= pC
1 A None 1− pA

2 A; B None (1− pA); (1− pB)

AB Double (1− pA)(1− pB)

3 A; B; C None (1− pA); (1− pB); (1− pC)

AB; BC; AC Double (1− pA)(1− pB); (1− pA)(1− pC); (1− pB)(1− pC)

AB+BC+AC D∗3 (1− pA)(1− pB) + (1− pA)(1− pC)+

+(1− pB)(1− pC) − 2(1− pA)(1− pB)(1− pC)

T Triple (1− pA)(1− pB)(1− pC)

* Logical sum of double coincidences
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2.1.1 Calculation of detection efficiency

The detection efficiency of the LS counter φ is a function of the FOM and depends on
the type of disintegration of the radionuclide. In the case of pure β-emitters ε is the
product of the counting probability P(E,ϕ) of a given pulse (taken from table 2.1) and
the normalized β-spectrum S(E), integrated over the entire decay energy range [27]:

φ(ϕ) =

∫Emax
0

S(E)P(E,ϕ)dE, (2.20)

where Emax is the maximum energy of the β particle.
EC radionuclides decay along multiple paths and have more complex decay schemes.

In the case of these radionuclides, the counting efficiency ε is calculated as the sum of
products of intensities I(Ej) and the probability of counting P(Ej,φ) of a given type of
signal (taken from Table 2.1) at certain energy Ej. The summation is performed over
the entire discrete energy spectrum with k energies Ej [27]:

φ(ϕ) =

k∑
j=0

I(Ej)P(Ej,ϕ). (2.21)

2.1.2 Calculation of energy spectra

An important part of the calculation of the detection efficiency is the spectrum of
the deposited in the cocktail energy. It is composed of the electrons emitted from the
decay process of the initial isotope or from rearrangement processes in the shell of
the daughter atom. Additionally, photons, that are emitted as a result of the decay
process, can transfer energy to the scintillator via Compton scattering and photoelectric
effect. For photons with energies higher than 1.022 MeV, electron-positron pairs can
also be produced. It should be emphasized here that, in certain cases, the deposited
energy spectrum may not correspond to the emission spectrum. This could happen, for
example, when X-ray or γ photons escape the volume of the scintillator, or are scattered
and deposit only a part of their energy. Another source of difference is for high-energy
β-particles, which have a long stopping path, and can interact only partially with the
scintillator before leaving it.

For β− or β+ transitions, the probability for an electron emission with energy W =

1+ E/m0c
2 is given by [27]:

N(W)dW =
g2

2π3

√
W2 − 1W(W0 −W)2F(Z,W)(1+ δR(W,Z))C(W)dW, (2.22)

where g is the coupling constant of the weak interaction, F(Z,W) is the Fermi function,
δE(W,Z) accounts for radiative corrections, Z is the atomic number of the daughter nu-
cleus and W0 is the maximum energy. C(W) is the shape factor function. Equation 2.22

can be evaluated using the SPEBETA code by Ph. Cassette [83]. A more sophisticated
calculation that includes screening corrections is included in the BetaShape code by X.
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Mougeot [84]. Beta-spectra calculated by the code can be found on-line on the Decay
Data Evaluation Project (DDEP) website [85]. The importance of the β-spectrum shape
for the TDCR method is difficult to overestimate. A critical analysis of the subject is
given in the studies by K. Kossert and X. Mougeot [53, 86].

In the EC process a vacancy in the shell of the daughter atom is produces. This is then
followed by a rearrangement of the electrons that may lead to the ejections of Auger
electrons. The X- or γ-rays that are emitted can also interact with the scintillator and
produce secondary electrons. When calculating the detection efficiency of EC emitters,
the continuous β-spectrum must be replaced by a sum of all possibilities of Auger
electrons and photon interactions. The contribution of the latter is calculated with
the aid of Monte Carlo procedures. There are different atomic rearrangement models
that were developed in order to compute the counting efficiency of EC nuclides. A
good summary of models can be found in [27]. Advancements towards high-precision
calculation of EC decays can be found in [87].

Excluding pure β-emitters, the radioactive decays are usually accompanied by one
or more photon emissions. Low-energy X-rays of a few keV are usually easily fully
absorbed within the scintillator [27]. For higher energies the Compton scattering be-
comes more probable and the fraction of the total energy that gets deposited within the
sample reduces. In any case, the effect of multiple secondary electrons with energies
E1 + E2 + · · ·+ En = E is not the same as the effect of a single electron with energy E,
due to the non-linearity of the scintillator. The correct effective deposited energy would
have to be weighted by the ionization quenching function for each electron energy, i. e.,
E
(1)
eff = EQ(E) and E(n)eff = E1Q(E1) + E2Q(E2) + · · ·+ EnQ(En).
The effective deposited energy in the case of photon interactions can be calculated

with the aid of Monte Carlo procedures. In this case, the detection efficiency starts to
depend on the size and shape of the sample, as this controls the probability to absorb
X- or γ-rays. No such dependence would exist for low-energy β-emissions. For high
energy electrons, however, the possibility for the escape of β-particles, before they have
deposited all their energy in the sample must be considered. This can again be modeled
using Monte Carlo methods. In the case of high-energy electrons, the corrections that
must be introduced are less necessary as the detection efficiency would be close to
one [88]. It should be noted here, that in the cases where emissions escape the sample,
the transport in the surroundings of the LS vial must also be simulated with the Monte
Carlo code due to the possibility of backscattered photons or electrons.

2.2 the triple-to-double coincidences ratio method

The triple-to-double coincidences ratio (TDCR) method is a LS counting method that is
used to calculate the average number of detected photons from a scintillating sample.
The technique relies on the free parameter model for a three-PMT detector to make the
link between the measured scintillations and the detection efficiency. A specialized
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analyzer system is required for the application of the TDCR method. The system must
allow the counting of double coincidence pulses (AB, BC andAC) and triple coincidence
pulses (T ).

2.2.1 Detection efficiency of a three-PMT detector

The theoretical counting efficiencies in a R = 3 PMT system can be calculated by
substituting the appropriate counting probability P(E,ϕ) from Table 2.1 in equation
(2.19) and are the following:

φ2 =

∫Emax
0

S(E)
(
1− e−n̄/3

)2
dE, (2.23)

for two PMTs working in coincidence and

φT =

∫Emax
0

S(E)
(
1− e−n̄/3

)3
dE, (2.24)

for three PMTs working in coincidence. The logical sum of double coincidences is
calculated as [27]:

φD =

∫Emax
0

S(E)

[
3
(
1− e−ϕEQ(E)/3

)2
− 2

(
1− e−ϕEQ(E)/3

)3]
dE (2.25)

The ratio of the triple coincidences counting efficiency to the logical sum of double
coincidences counting efficiency is expressed as [27]:

φT
φD

=

∫Emax
0

S(E)
(
1− e−ϕEQ(E)/3

)3
dE∫Emax

0

S(E)

[
3
(
1− e−ϕEQ(E)/3

)2
− 2

(
1− e−ϕEQ(E)/3

)3]
dE

, (2.26)

where S(E) is the normalized spectrum of the energy transferred to the liquid scin-
tillation cocktail, which includes β-particles, photoelectrons and Compton electrons,
coming from X-ray and γ-ray interactions in the cocktail, and Auger and conversion
electrons. Q(E) is the ionization quenching correction factor (1.12), Emax is the maxi-
mum β-particle energy and ϕ is the FOM. The logical sum of the double coincidences is
defined as:

D = AB∨BC∨AC, (2.27)

where ∨ is the logical or operator, and the number of D coincidences can be obtained
from the double and triple coincidences as:

D = AB+BC+AC− 2 T . (2.28)

For a large number of detected events, the ratio of the triple coincidence counting
rate to the logical sum of double coincidences counting rate T/D converges towards the
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ratio of counting efficiencies φT/φD [27]. The left-hand side of the expression for the
ratio of the triple coincidences efficiency to the logical sum of double coincidences effi-
ciency (2.26) can be obtained experimentally and the right-hand side can be calculated
theoretically if S(E) is known and the value of kB in (1.12) is assumed.

Equation (2.26) is valid under the assumption of identical PMTs, but in a real counter
this assumption is rarely true. In that case a set of three equations has to be solved [27]:

φT
φAB

=

∫Emax
0

S(E)
(
1− e−ϕAEQ(E)

)(
1− e−ϕBEQ(E)

)(
1− e−ϕCEQ(E)

)
dE∫Emax

0

S(E)
(
1− e−ϕAEQ(E)

)(
1− e−ϕBEQ(E)

)
dE

,

φT
φBC

=

∫Emax
0

S(E)
(
1− e−ϕAEQ(E)

)(
1− e−ϕBEQ(E)

)(
1− e−ϕCEQ(E)

)
dE∫Emax

0

S(E)
(
1− e−ϕBEQ(E)

)(
1− e−ϕCEQ(E)

)
dE

,

φT
φAC

=

∫Emax
0

S(E)
(
1− e−ϕAEQ(E)

)(
1− e−ϕBEQ(E)

)(
1− e−ϕCEQ(E)

)
dE∫Emax

0

S(E)
(
1− e−ϕAEQ(E)

)(
1− e−ϕCEQ(E)

)
dE

,

(2.29)

where ϕA, ϕB and ϕC are the FOMs of each PMT and ϕA +ϕB +ϕC = ϕ. Similar
to the situation with identical PMTs, here the experimental ratios T/AB, T/BC and
T/AC converge towards the theoretical counting efficiency ratios φT/φAB, φT/φBC
and φT/φAC when the number of detected events is large. The values of the FOMs

in equations (2.29) can be found using a Downhill Simplex algorithm [89], where the
function to be minimized is the squared sum of differences between the theoretical and
experimental ratios:

∆ =

(
φT
φAB

−
T

AB

)2
+

(
φT
φBC

−
T

BC

)2
+

(
φT
φAC

−
T

AC

)2
. (2.30)

The minimization of the equation gives the values of the FOMs (ϕA,ϕB and ϕC) for a
given kB value. The counting efficiency for a given coincidence type (double coincidence,
triple coincidence, etc.) can be calculated using Table 2.1 and equation (2.19). The activity
can be determined using the calculated counting efficiency and the counting rate for
that coincidence type. As most information is contained in the logical sum of the double
coincidences D, the activity A is often expressed as:

A =
D

φD(kB,ϕA,ϕB,ϕC)
. (2.31)

Depending on the radionuclide, equation (2.30) can have one solution, in the case
of pure β-emitters, and three solutions, in the case of EC radionuclides [27]. In the
cases where the equation has three solutions, the counting efficiency must be varied
experimentally to determine on which part of the curve does the experimental TDCR lie.

Counting efficiencies calculated with the TDCR model are dependent on the choice
of the kB parameter, which is the only adjustable parameter in the model. For high
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Figure 2.1: Influence of the kB parameter on the calculated activity using the TDCR model in
the case of 3H. All other parameters, such as the FOM, are kept the same.

energy β-emitters (over a few hundred keV), the influence of the chosen value of the
kB parameter is negligible [27]. For radionuclides emitting low energy electrons (for
example 3H), the differences in the activities calculated with different kB values are
significant. The dependence of the estimated activity of 3H on the value of the kB
parameter is illustrated on Figure 2.1.

Due to the specific requirements of the TDCR model, the use of specially designed LS

counters, vials and multichannel analyzers is necessary.

2.2.2 Practical aspects of the TDCR method

There are some practical considerations which need to be taken for the proper appli-
cation of the TDCR model. Special requirements exist for the liquid scintillation vials
which need to be used as well as for the construction of the three PMT detector system.

liquid scintillation vials The main purpose of the liquid scintillation vials
is to securely store the radioactive sample and cocktail and provide safe and stable
handling. The most common types of vials used in liquid scintillation counting are
plastic (polyethylene) vials and glass vials with low potassium content and a standard
volume of 20 ml. The light output from plastic vials is higher than the one from clear
glass vials due to their diffusive surface, which suppresses effects like total internal
reflection and refraction [90]. The main drawback of plastic vials is the shorter long-term
stability of the cocktail, which is caused mainly because it diffuses in the vial walls.
There is no such effect in glass vials, but significant light trapping can occur due to the
large difference in refractive indices between glass and air; this causes total internal
reflection of some of the emitted light, which causes problems with the application of
the TDCR model. It causes reduction of the total amount of light, emitted from the vial,
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thus reducing the detection efficiency, and it has a different probability of occurring
depending on the location of the scintillation event inside the vial. The latter effect
creates a dependency between the mean number of photons emitted from the vial and
the location of the scintillation, which violates one of the primary assumptions of the
TDCR model that the number of photons reaching the photocathodes of the PMTs follow
a Poisson distribution with a mean value which is constant for the entire volume. A
compromise can be achieved by using clear glass vials plastered with diffusive tape, or
by creating diffusive glass vials by sandblasting or etching [80].

liquid scintillation counters The number of emitted photons in a liquid
scintillation event is low in the case of low-energy β-emitters. This requires the use of
very optimized optics and sensitive photomultipliers with high quantum efficiency of
the photocathode. Quantum efficiency is defined as number of photoelectrons emitted
from the photocathode divided by the number of incident photons and its range is
from 20% to 40% [91]. As the TDCR model assumes non-zero detection probability for
single photons, the PMTs must have good separation of the single electron peak from
the noise peak for a proper adjustment of the analyzer’s threshold. This requires the
use of high-gain photodetectors with high peak-to-valley ratio on the single photon
peak [29].

Considering that the signal from the phototubes is a few nanoseconds long, the
electronics and signal processing unit of the detector must be able to process fast pulses.
To reduce the effect of thermal noise in the PMTs, the analyzer of the detector must be
able to detect coincident signal between the different PMTs. The usual duration of the
coincident window (the maximum elapsed time between two pulses for which they are
considered coincident) is between 40 ns and 200 ns1.

When a photomultiplier tube is operated in a pulse detection mode, as in LS count-
ing, random pulses with small amplitudes following the signal output pulse may be
observed. They are called afterpulses and often disturb the accurate counting of signals.
There are two types of afterpulses: very short delay ones (several nanoseconds), caused
by elastic scattering of electrons from the first dynode, and long delay ones, caused by
positive ions created by the ionization of residual gases in the volume of the PMT [28].
The latter are following the signal after a delay in the order of microseconds, due to
the slower movement of the heavier positive ions. To ensure the correct counting of
scintillation pulses, the electronics of the LS detector must have a dead-time unit, which
adds a dead-time period after each detected pulse to avoid false coincidences. The
duration of the dead-time period is a few tens of microseconds. It is mandatory that
the dead-time is from the extending type [27], that is whenever a pulse comes during
a dead-time period, the period timer is set to zero and starts again. This ensures that
every detected event will be preceded by an event free period. Precise knowledge of
the dead-time is also important when measuring radionuclides with very short half-life

1 In fact, the choice of the proper coincidence resolving time was found to be non-trivial and the whole of
Chapter 9 is dedicated to this problem.
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daughter products in their decay chain (e. g., 214Po in the decay chain of 222Rn with a
half-life 160 µs). If the short-lived product has a half-life that is similar to the dead-time
of the detector, a significant amount of its decays would occur during the dead-time
and will not be registered. By knowing the dead-time period with high precision, it is
possible to make corrections when calculating the activity.

In order to implement the TDCR model, a specialized 3-PMT counter is needed. The
three PMTs are positioned symmetrically around the vial at equal 120° angles. If the
PMTs are identical, the simplified equations (2.24) and (2.25) can be used, but due to the
high cost of matched PMTs, this is usually not the case. In non-identical PMT systems,
the proper detection efficiency can be calculated using the system of equations (2.29).

A relationship exists between the single signals and those in coincidence, which
allows the formulation of two balance equations [92]:

A+B+C = T +D+ S, (2.32)

AB+BC+AC = 2T +D. (2.33)

To compute the equations, the detector must store information of the non-coincident
signals (A, B, C), the logical sum of the non-coincident signals (S), the double coin-
cidence signals (AB, BC, AC), the logical sum of the double coincidence signals (D)
and the triple coincidence signals (T ). Fulfillment of the balance equations on each
acquisition run is a good indicator of the proper operation of the detector system [29].

code for the implementation of the tdcr model The determination of
efficiency using the TDCR model requires the numerical integration of equations (1.12)
and (2.29), the minimization of (2.30) and the computation of electron stopping powers.
A specialized computer code has been developed to perform the calculations required
by the TDCR method. TDCR18 is an application devoted to the calculation of detection
efficiencies and FOM of three-PMT LS counters for β-radionuclides. It is similar to the
older version TDCR07c, which can be found on-line [93]. The code, developed by Ph.
Cassette (LNHB), is used in some parts throughout this work to implement the TDCR

method. The physical models used in the program are:

• Poisson statistics (2.7) for the light emission from the liquid scintillator

• Birks’ law (1.7) for the non-linearity of the scintillator,

• ICRU n°37 formula [25] over 100 eV and linear extrapolation to zero under 100 eV
for the stopping powers of the electrons in the LS cocktail,

• Optionally uses the stopping power dataset provided by Tan & Xia [94],

• β-spectra calculated using the SPEBETA program [83].

The program uses the radionuclide atomic number and atomic mass, and the density
and Z/A ratio of the LS cocktail as an input after which it presents various options for
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calculation to the user. One of the options is to calculate the detection efficiencies from
the three values of individual triple-to-double coincidence ratios (T/AB, T/BC, T/AC),
when the asymmetry of the phototubes is not negligible. The program calculates the
detection efficiency for each of the three double coincidences (εAB, εBC, εAC) and
gives the relative quantum efficiencies of each PMT. A detailed explanation of the code
can be found in [93].

detection efficiency variation The TDCR model provides means to calculate
the detection efficiency of the detector system for given measurement conditions and
for a given radionuclide. Changing the measurement conditions would not change
the activity of the sample, except, of course, accidentally dropping it on the floor and
breaking the vial. If the TDCR model, including the choice of kB parameter, is correct, the
calculated activity of the measured sample should be independent of the variations in
the detection efficiency. That is, the activity calculated at detection efficiency 0.2 should
be the same as the activity calculated at detection efficiency 0.5 and at 1.0. This premise
is the basis of the efficiency variation method. By making consecutive measurements of
the same LS sample under different conditions, the detection efficiency will vary.

In a properly designed counter, the detection efficiency is always optimal, so the only
way to vary the detection efficiency is to decrease it. There are several ways to decrease
the detection efficiency of a LS counter: defocusing the photomultiplier tubes, decreasing
the light output of the source by coaxial filters or by creating a set of quenched sources.
There are indications that the three methods could be equivalent [80], however, data
from the framework of this thesis shows a significant difference between the use of grey
filters and chemical quenching2.

After performing measurements under different conditions, the activity of the sample
is calculated for different values of the ionization quenching parameter kB. The kB
value that results in the least variation of the calculated activity among the various
measurements is chosen as the “optimal”. In this sense, the ionization quenching
parameter kB in Birks’ formula (1.12) is an external parameter for the TDCR model.
The kB parameter characterizes the LS cocktail and, in the ideal case, it should be
independent of the detection system. Due to the fact that it is the only variable parameter
in the TDCR model, the choice of an optimal kB value may depend on the detection
system parameters (geometry of the detector, vial type, cocktail volume, etc.)3.

The detection efficiency variation method is the go-to method to determine the kB
parameter in the practice of radionuclide metrology using LS counting. The method is
illustrated on Figure 2.2. In this example, a 3H source in a toluene based LS cocktail
was measured with a set of optical filters with different transparency. The activity
was calculated using different values of the ionization quenching parameter kB. It is
important to note that the optimal value for kB is chosen solely on the logic that the
calculated activity of the source should be independent of the detection efficiency.

2 The results from a comparison of the two methods are shown in Chapter 9.
3 These deficiencies of the detection efficiency variation method are discussed in Chapter 9.
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Figure 2.2: Calculated activity as a function of the TDCR at different kB values - high, optimal
and low. A 3H sample in a diffusive vial was used. The efficiency was varied using mesh filters
with different density

The choice of the kB parameter is very important for the correct calculation of the
activity of low-energy emitters like 3H as shown in Figure 2.1. For the measurement
of high-energy radionuclides, the influence of the kB is less pronounced. This can
be explained by the fact that the non-linearity of the light emission of the LS cocktail
depends mainly on the non-linearity of the linear energy transfer of the electrons
passing through the matter with energies less than 20 keV [80]. The light produced by
higher energy β-emitters comes mainly from higher energy electrons, for which the
linear energy transfer is constant.

Detection efficiency variation is also necessary in those situations where, as said
previously, one TDCR value corresponds to more than one detection efficiency. The only
possibility in such a case is to vary the detection efficiency, and thus the TDCR value, to
determine on which point on the curve does the correct detection efficiency lie.

2.3 the compton coincidences method

The weak point of activity standardization methods that use the free parameter model
is the lack of precise knowledge of the non-linearity of the scintillator. To an extent it
can be described by semi-empirical functions, like Birks’ formula, but still there is some
uncertainty due to the unkown parameters. Perhaps, the best solution to the problem is
to replace the non-linearity equations with an experimentally measured light ouput of
the scinitllator. Such measurements can be performed using the Compton coincidences
method.
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The Compton coincidences method is a technique to study the response of scinitllators
in the 1 – 20 keV energy range. It was initially developed by M. N. Péron and P. Cas-
sette [95, 96]. The basic premise is that a collimated external source of mono-energetic
γ-rays is placed such that the photon beam passes through the LS vial containing
the scintillator that is studied. Most of the γ-rays undergo Compton scattering and
produce a Compton electron inside the cocktail. The scattered γ-ray can interact with
the γ-detector and knowing its energy it is possible to calculate the energy deposited in
the cocktail by the Compton electron from the energy conservation law. In the initial
design, the relative light output of the scintillator is determined by analyzing the energy
spectrum of a single PMT [95]. Both the LS and γ-ray detection parts of the system
are connected in coincidence. With the appropriate analyzing electronics it is possible
to study the LS response in coincidence with events in the γ-channel, for a series of
narrow slices in the γ-spectrum. This is equivalent to having a source of monoenergetic
electrons with a known energy that is adjustable in a certain range. The energy of the
virtual source depends on the energy gate in the γ-spectrum. A schematic drawing of
the Compton coincidences setup is shown in Figure 2.3.

LS sample

e−

Monoenergetic
γ-ray source

γ-ray

θ

PMT/PMTs
High-resolution
γ-ray detector

Coincidence logic

E ′

E

Ee− = E− E ′

Figure 2.3: Schematic representation of a Compton coincidences system. The energy of the
electron that is deposited in the cocktail can be determined from the energy of the scattered
γ-ray.

The initial premise was expanded in 2008 by P. Cassette and Phuc Do, by replacing
the single PMT with a TDCR detector [97]. The use of a three-PMT system allows the
direct calculation of the mean number of detected photons for a monoenergetic source.
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It is derived from the non-detection probability, i. e., the probability to detect 0 photons
if there are n̄ dectected on average. For absorbed energy E the detection efficiency in
PMT X is [97]:

εX = 1− e−
n̄
3 , X = A,B,C. (2.34)

For two PMTs X and Y or three PMTs T in coincidence the detection efficiency εXY is [97]:

εXY =
(
1− e−

n̄X
3

)(
1− e−

n̄Y
3

)
, XY = AB, BC, AC. (2.35)

εT =
(
1− e−

n̄A
3

)(
1− e−

n̄B
3

)(
1− e−

n̄C
3

)
(2.36)

Finally, from the ratio of the efficiency for triple to the efficiency for double coincidences,
one can obtain the mean number of detected photons per PMT n̄A, n̄B and n̄C:

n̄Z = −3 ln
(
1−

εT
εXY

)
= −3 ln

(
1−

T

XY

)
, Z = C,A,B, (2.37)

where it is assumed that, for a high number of detected events, the ratio of the detected
triple to double coincidences tends towards the ratio of efficiencies.

The method implicitly assumes that there is no correlation between any pair of PMTs,
i. e., irregardles of the position of the decay inside the sample, the number of photons
reaching each PMT is equal on average. This may not be true for samples in clear glass
vials due to the possibility of total internal reflection. For samples in diffusive glass
or polyethylene vials the assumption should be reasonable. Equation (2.37) is useful
only if the double and triple detection efficiencies are not close to 100%. This implies
electron energies in the range up to 10 – 20 keV. This is not a severe limitation, however,
as this range is the most interesting when studying the scinitllator non-linearity.

The Compton coincidences method with a TDCR detector can be used in two ways as a
primary activity measurement method: the Compton spectrometer efficiency tracing (CSET)
method proposed by Ph. Cassette and Phuc Do [97] and application of the TDCR

method with a measured non-linearity function of the scinitllator, again proposed in
the same article (hereafter referred to as Compton coincidences and TDCR or simply
C-TDCR). The latter approach was implemented as the zero model by using coincidence
scintillation (ZoMBieS) method by Bignell et al. [98].

compton spectrometer efficiency tracing The CSET is a method that bears
resemblance to the CNET method [99]. In the latter, the tracer is a 3H source with known
activity. This is associated with many problems, such as the long-term stability of the
solution or the need to replace the tracer in time as 3H decays with 12.32 years half-life.
Note here, that the activity of this 3H source must be standardized by another method
and the only possibility thus far is the TDCR method.

The premise behind the CSET is that the 3H tracer is replaced by Compton electrons
produced by the external monoenergetic γ-ray source. By considering only LS events
which are in coincidence with the Compton spectrometer it is possible to create a
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virtual source inside the sample with a known energy spectrum. The light output of the
scinitllator, in terms of mean number of photons detected per keV of energy absorbed
in the scinitllator, can be deduced from the measurement of the virtual source. The
virtual source is then removed and the source of interest is measured. The detection
efficiency of the source to be measured can be deduced from the previously determined
light yield [97].

zero model by using coincidence scintillation The ZoMBieS method was
developed in order to circumvent the usage of semi-empirical equation that describes
the light output of the scintillator. The method uses a three PMT TDCR counter and a
γ-ray detector connected in coincidence. The type of coincidence (double or triple) in
the TDCR detector produced by each electron is also recorded. The light output of the
scintillator can be obtained from the triple to double coincidences ratio analytically
under an assumption for a mono-energetic source [97]. Thus, the relative light output
of the scintillator can be obtained as a function of the energy deposited by the Compton
electrons.
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A N A LY S I S O F D I G I T I Z E D L I S T- M O D E D ATA

A
nalog acquisition systems in LS counting have some often sought advantages

over their digital equivalents. Once build, they are usually stable in time and
easy to use. Because they are relatively difficult to build and to make changes

after, they are seldom configured in practice and once set up for operation, they are
rarely changed again. These qualities are perfect for more routine measurements or
when stability has a high priority. However, digital acquisition, and especially waveform
digitization and off-line storage, has the edge in some circumstances – especially when
exploring new ways in which the detector system could be used.

By using a fast digitizer it is possible to record the timestamp, energy of each signal
coming from a PMT or γ-detector in a LS system. The recording is usually done in the
storage of a computer and can be analyzed off-line indefinite number of times. This
allows the use and comparison of various analysis algorithms on the same set of signals.
Having off-line recordings of measurements also gives the possibility to re-process
the obtained data differently when new data or knowledge becomes available. For
these and other advantages, almost all measurements performed within this thesis were
performed with a four channel 1 GS/s CAEN DT5751 digitizer. It has the ability to save
the pulse area and timestamp of all incoming PMT pulses into a list-mode file for later
analysis. To process the data a dedicated home-made software (hereafter referred to as
list_mode_analysis) was developed.

3.1 the list_mode_analysis program

The list_mode_analysis is a program that can read CAEN digitizer list-mode files,
analyze them using coincidence counting logics and output counting rates and energy
or time domain spectra. It is developped in the framework of this thesis, and is intended
to be used with a two or three PMT LS detector or a LS detector in coincidence with
a γ detector. The program is written in the Rust programming language, which is a
strongly-typed system programming language with similar syntax and performance as
C++, but has the advantage of being memory safe without using garbage collection.

The PMTs of a LS system are highly sensitive detectors that are very efficient in
discerning even single photons. One drawback, however, is the large amount of noise
events that can also be observed: uncorrelated events such as thermal noise or noise in
the cables and electronics and correlated events such as afterpulses. Thus, single PMTs

are not reliable and coincidence between two or more PMTs is looked for in order to
discriminate between noise events and true scintillations from the sample. To define
the coincidences, at the base of the operation of the list_mode_analysis program

41
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sits the coincidence counting logic. There are two such logics that were developed for
3-PMT LS detectors – the common dead-time logic used in the MAC3

1 TDCR acquisition
module [100], and the individual dead-times logic developed for the front-end digital
pulse processing device for TDCR counting (nanoTDCR) [101]. An early version of the
list_mode_analysis software could use both algorithms, and it was used to perform a
comparison of the two. The results from the comparison, as well as more information
about the counting algorithms, can be found in Chapter 4. Because of the results from
the comparison and the general ease of use of the common dead-time logic, it was
selected as the main algorithm for defining coincidences.

The common dead-time logic states that whenever an event is registered in a given
channel, a dead-time window that is common for all three channels will be triggered. At
the same moment a common coincidence window will also be opened. The dead-time
window is in the order of 10 µs and the coincidence window is in the order of a few
tens or a few hundreds of nanoseconds. The coincidence window is defined as the time
after the first event that opened it in which more events will be considered. After the
coincidence window is over, the dead-time window remains open. The dead-time is
of the extending type and so all events that fall within the window reset it, i. e., the
dead-time window is opened anew. This ensures that before an event is registered,
the time that has passed from a previous detected event is at least the width of a one
dead-time window. Only after the end of the dead-time window a detected event can
start a new coincidence window.

Only the first registered event in a given channel (primary event) is considered and all
other events in the same channel are ignored for the duration of the coincidence window.
This is again necessary due to the occurrence of unwanted afterpulses that follow the
main pulse. Within a coincidence window the channel, energy and timestamp of the
primary events are recorded. The timestamps, relative to the start of the coincidence
window, can be used to construct the spectra of the time differences ∆ti for each
coincidence channel i = AB,BC,AC,D or T . The energies can be used to discriminate
coincidences using predefined gates, e. g., register only events in coincidence with a
certain energy deposited in the γ-channel.

3.2 flow of the program

There are three main modes of operation of the list_mode_analysis program:

1. obtain the single and coincidence counting rates in the various channels

2. obtain the time distribution of events within a coincidence channel

3. obtain the counting rates in all channels as a function of the energy deposited in
the γ channel.

1 The abbreviation comes from the french module d’acquisition de coïncidences triples or module for the
acquisition of triple coincidences.
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list_mode_analysis : mode 1 In the first mode the program simply applies the
common dead-time logic with user defined coincidence window and dead-time window
widths and increments the coincidence counters appropriately. It also monitors the
live-time of the system and the end of a run through the data the program reports the
counting rates in each channel. This mode is used for more basic LS measurement where
timing data is not needed. In this mode, the software also has the ability to record only
LS events which are in coincidence with an event within a specified energy window
in the γ channel. The latter is especially useful when applying the CSET technique
described in Section 2.3.

list_mode_analysis : mode 2 The second mode of operation is more involved
and it works as follows: The user inputs the path to the CAEN list-mode files, the
coincidence window width and the dead-time window duration. The user also selects
the coincidence channel for which the time distribution will be constructed (AB, BC,
AC, D or T ). The reference and secondary single channels must be also chosen, if a
double coincidence channel is selected. For example, consider the case when channel
A is selected as a reference, channel C as a secondary and the AC time distribution is
requested. If C triggers after A the recorded time difference will be positive and if C
triggers before A it will be negative.

At the end of each coincidence window, the coincidence counters are incremented
appropriately and the histogram h(i) for the selected by the user time distribution is
incremented. If the time distribution for the D channel is required and there is a D
event during the coincidence resolving time, the histogram bin corresponding to a time
difference ∆t between the second and the first arriving primary events is recorded. If
the selected time distribution is for the T channel, the histogram bin corresponding to
the time difference between the third and first arriving primary events is recorded, only
if there is a triple coincidence during the coincidence resolving time.

If the selected time distribution is for one of the double coincidence channels AB,BC
or AC, it must be noted that some of these events are also T events. If there is a
double coincidence from the requested type and there is no T coincidence during the
coincidence resolving time, the time difference that is recorded in the histogram is the
time between the secondary and reference channels. If there is a T coincidence during
the coincidence resolving time, the recorded time difference will be that of the T event.
A graphic depiction of the same logic used for the calculation of the different ∆ti can
be seen in Figure 3.1.

After the analysis of all files is completed, the list_mode_analysis code outputs
the histogram of the time differences for the user-selected coincidence channel. The
histogram has a user selectable bin width. The time differences ∆ti described above are
defined in such a way that the histograms h(i) fulfill the following criteria:

n(i)(τ) =
1

L

τ/b∑
t=0

h
(i)
t , (3.1)
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Figure 3.1: Time differences between the first and last primary events in the AB,D and T
channels. Note that all T coincidences are a subset of the AB coincidences. Thus, in the third
case, the C event is the first primary event in both the AB and T channels.

where n(i) is the counting rate that would be reported by a Mode 1 measurement with
coincidence resolving time τ and live-time L. The histograms h(i) give the opportunity
to study the counting rate for a given channel as a function of the coincidence resolving
time with a single measurement. It should be noted that the construction of the his-
togram of time differences between only two channels is relatively straightforward and
such histograms were shown in previous publications [102]. The time differences in a
three PMT systems are more involved, however, and the selection logic described above
was first developed for the list_mode_analysis code.

For the proper analysis of time distributions it is usually also necessary to perform
a correction for accidental coincidences. The method for correction for is described
in detail in Chapter 8. It is based on the analysis of the time distribution in a given
coincidence channel. The underlying assumption is that coincidences of primary events
separated by several microseconds in time are accidental. By analyzing the time dis-
tribution in the region where the rate of occurrence of true coincidences is negligible,
the contribution of the accidental coincidences can be estimated. The measured time
distribution fi(t) is the sum of the distribution of true events ftrue(t) and the distribu-
tion of the accidental coincidences, where t = ∆t. As the accidental coincidences are
formed by uncorrelated events and if their occurrence is a Poisson process, then their
distribution in time is exponential, which gives:

f(t) = ftrue(t) + a0e
−λt, (3.2)

where a0 are the accidental coincidences at time zero and λ is the rate of coincidence
events.
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The parameters of the distribution can then be determined by a fit in the region where
the contribution of the true coincidences can be assumed negligible. The contribution of
the accidental coincidences in the ith channel in a given bin can then be calculated as:

a
(i)
t = a0e

a1t (3.3)

where a0 and a1 are the parameters of the fit of the time interval distribution. In the
list_mode_analysis software the fit is done using time distribution data between
2 µs and 3 µs. This interval was found to contain negligible contribution from true
coincidences. The counting rate of the true coincidence in a given coincidence channel i
is then determined as:

n
(i)
true(τ) =

1

L

τ/b∑
t=0

[
h
(i)
t − a

(i)
t

]
. (3.4)

At the end of a Mode 2 analysis, both the h(i)t and (h
(i)
t − a

(i)
t ) histograms are reported

by the software.
The second mode of operation was used in the studies in Chapter 8 to develop

methods for correction for accidental coincidences. It was also used for studying the
effect of the coincidence resolving time on TDCR activity measurements, described in
Chapter 9. In Chapter 7, the half-life of some nuclear excited states is measured by
analysis of the time distributions of coincidences between LS events and a γ channel.

list_mode_analysis : mode 3 The third mode of operation was specifically
developed for analysis needed for the application of the C-TDCR method. An overview
of the method is given in Section 2.3. This mode is used only with a two or three PMT

LS system in coincidence with a γ detector. At the start of the analysis, an empty 2D
array with size N :M is initialized, where N is the number of energy channels in the γ
spectrum and M are the number of LS-γ coincidence channels (19 in total). If there is a
coincidence between a LS channel and the γ channel, the array cell that corresponds to
the γ energy and the LS-γ coincidence is incremented. When the entirety of the files are
analyzed, the software outputs the 2D array from which the number of events in each
coincidence channel can be obtained as a function of the γ channel energy.

3.3 practical usage

Besides the three main modes of operation, the list_mode_analysis program has
a number of options that can be used to filter specific events or to manipulate the
input and output. The software does not have a graphical user interface and it is
operated within the command line with a set of options. A full list of the options is
given in the Appendix in listing C.1. The source code of the program is published on
https://gitlab.com/cdutsov/cdt_logic.

https://gitlab.com/cdutsov/cdt_logic
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C O M PA R I S O N O F C O I N C I D E N C E C O U N T I N G A L G O R I T H M S

F
or the proper working of a LS counting system, it is important to force an
artificial dead-time after each detected signal [100]. The purpose of this
practice is to eliminate the chance for the detection of PMT afterpulses. There

are two types of dead-time that could be imposed – non-extending and extending type.
The former has a fixed duration after each detected signal and the latter is imposed after
a signal and is then extended by each subsequent signal that falls within the dead-time.
The extending type dead-time is favored in LS counting as it ensures that at least some
minimum amount of time, given by the dead-time base duration, has passed between
one detected signal and the previous.

In a single PMT LS system the dead-time logic is simple, but in a two or three PMT

system there can be a number of ways in which the dead-time can be applied to the
various channels. In TDCR counting there are two ways currently in use in which dead-
time is imposed. The common dead-time (CDT) counting logic states that an incoming
pulse in either channel of the TDCR detector will trigger the dead-time counter for all
three channels. The individual dead-times (IDT) counting logic states that an incoming
pulse in a given channel will trigger the dead-time counter for that channel only. The
other two channels will remain open and could accept new signals. Some example
sequences of events and the response of each counting logic are shown in Figure 4.1.

The CDT counting logic is implemented in the analog circuits of commonly used
MAC3 TDCR counting module [100] and the IDT counting logic was recently designed for
use in the nanoTDCR counting device [101], which is based on field-programmable gate
array (FPGA) technology. While the CDT logic is widely used and well tested, the IDT

offers potential improvements in TDCR counting and thus a comprehensive comparison
of the two logics is necessary. In this chapter, the performance of the two TDCR counting
logics is compared with three different experimental setups and a dedicated Monte
Carlo code for simulation of TDCR events. The performed studies are also presented
in [103].

4.1 experimental setups

In order to perform a systematic comparison between the CDT and IDT counting logics,
three different experimental setups were used. To have results that are independent of
the used hardware, a dedicated Monte Carlo code for the simulation of TDCR events,
was used as well. A brief description of each experimental setup and the Monte Carlo
code is given hereafter.
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Figure 4.1: Comparison of the IDT and CDT counting logics in the case of double and triple
coincidences. The IDT counting logic could misclassify triple events as double events, but has
much lower double coincidence dead-time.

4.1.1 RCTD1-MAC3-CAEN desktop digitizer

The first experimental setup was realized on the French primary TDCR counter (RCTD1).
The read-out chain of the RCTD1 consists of an amplifier (CAEN Mod. N978) and a
constant fraction discriminator (CFD). The CFD is a Canberra 2126Q with four channels.
The digital outputs of the CFD were connected both to the MAC3 module and a CAEN

DT5751 desktop digitizer with 1 GHz sampling rate (Figure 4.2). The digitizer has the
option to record the time of arrival of the incoming pulses in each TDCR channel in list-
mode files. The data files were processed off-line by the list_mode_analysis computer
code, which is described in Chapter 3. Initial versions of the code had the option
to obtain the coincidence counting rates when using both the CDT and IDT counting
algorithms. The MAC3 is widely used and well tested and thus it was used as a reference
to which the digitizer data could be compared.

4.1.2 Experimental setup 2: RCTD1, MAC3 and nanoTDCR

The second experimental setup again includes the RCTD1 detector system. This time,
the CAEN digitizer was replaced by a nanoTDCR device. Both the nanoTDCR and the
MAC3 module were directly connected to the logical outputs of the CFD. A simplified
schematic of the setup is shown in Figure 4.3. This setup was used for the measure-
ment of four 3H and three 90Sr/90Y sources. With this experimental setup the real-life
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Figure 4.2: Schematic of system 1

implementation of both counting logics, CDT implemented in the MAC3 and the IDT

implemented in the nanoTDCR, can be compared. By taking the digital outputs of the
CFD, all possible differences in the analog signal processing parts of the MAC3 and
nanoTDCR are eliminated. This ensures that any differences between the two can come
only from statistical fluctuations due to the number of recorded events or differences in
the behavior of the two counting logics. A limit of the system is that the two counting
systems cannot be started and stopped at exactly the same time and thus they do not
count precisely the same set of pulses. Nevertheless, a significant overlap between the
pulses that they detect can still be achieved.
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Figure 4.3: Schematic of system 2

4.1.3 Experimental setup 3: CDT and IDT implementation in the FPGA of the nanoTDCR

The nanoTDCR device is an FPGA based device and thus very versatile and easily ex-
tensible. It is capable of simultaneous measurements using two different dead-time
base durations and two different coincidence resolving times. This feature turns one
measurement with the nanoTDCR into four distinct measurements, each having one of
two dead-time base durations and one of two coincidence windows. Moreover, the two
dead-time analyzing logics can follow a different counting algorithm, i. e., one with the
CDT and one with IDT. Using this opion, one algorithm can be selected for two of the



50 comparison of coincidence counting algorithms

measurement channels and the other algorithm for the remaining channels. This makes
it possibile to compare the two counting logics with simultaneously occuring signals
on the same hardware.

For the third experimental setup, a nanoTDCR device was connected directly to the
PMTs of the TDCR counter developed and operated at Sofia University (TDCR-SU) [104].
The two possibile coincidence windows of the nanoTDCR where set to 40 ns and 100 ns
respectively. Both dead-time base durations were set to 50 µs, but one using the CDT

and the other the IDT counting algorithm. With this setup, four pure β-emitters: 3H,
14C, 63Ni, 90Sr/90Y and five 222Rn LS-sources were measured. The activity of the 222Rn
sources varies from 60 Bq to 3000 Bq.

The α-emitter 222Rn has four short-lived daughters: 218Po and 214Po – α-emitters and
214Pb and 214Bi – high-energy β-emitters. The daughter nuclide 214Po is of particular
interest when comparing the performance of the CDT and IDT algorithms because it can
decay during the imposed dead-time of the counter, due to its very short half-life of
165 µs. The logical sum of double coincidences detection efficiency is practically 100%
for the α-particles and very close to 100% for the β-particles in the decay chain of 222Rn.
Thus, in the standardization of 222Rn via LS counting, the most important factor for
calculation of the detection efficiency is the the correction for decay of 214Po during the
dead-time of the system [74].

4.1.4 Simulation: Monte Carlo generated events processed by CDT and IDT counting logics

In order to have more flexibility and information when comparing the two counting
algorithms a Monte Carlo code which simulates the time sequence of PMT detection
events in a TDCR measurement was used. The code was developed by Krasimir Mitev for
the purposes of this study and is described shortly in [103]. It was also the inspiration
for the code described in Appendix A.

The input of the program is the activity and measured counting rates (A, B, C, AB,
BC,AC,ABC) from a real measurement of a source. Additionally, the user can add noise
counting rates to each PMT. Another important input of the code is the time distribution
of scintillation events. In this work, the input time distribution was determined by
connecting a time-to-amplitude converter (TAC) to two of the output channels of a TDCR

counter. The channels are used as start and stop triggers for the TAC and a measurement
of a 3H source was performed. The obtained distribution is approximated well with
a sum of a Voigt profile and an exponentially modified Gaussian distribution (see
the solid line in Figure 4.4). The so fitted time distribution was then used in all 3H
simulations as a function from which the Monte Carlo code samples the timing of
individual events. The code outputs the generated single, double and triple coincidence
counting rates. It can also output the raw timestamps of each generated event, which
can be then fed into the list_mode_analysis analysis program. It can be used to
obtain the distribution of the time intervals between two PMTs. If the Monte Carlo and
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Figure 4.4: A TAC measurement of the time interval distribution between events from a 3H
source in a TDCR counter (red) and time distribution between Monte Carlo generated events
(blue)

list_mode_analysis codes work correctly, the obtained time distribution should be
the same as the one at the input. To illustrate the performance of the Monte Carlo
code the input and output time distributions are shown in Figure 4.4. The input is the
experimental time from the TAC and the output is the distribution of the time intervals
between events in PMTs A and B obtained from the Monte Carlo generated list-mode
file analyzed with the list_mode_analysis program. There is an excellent agreement
between the two distributions. The comparison serves to demonstrate that the used
Monte Carlo code generates realistic time interval distribution between events in a
TDCR counter.

After the validation, the Monte Carlo code was used to generate list-mode files with
a time distribution of events corresponding to a 3H source. The data was generated
for a wide range of activities. The files were analyzed using the list_mode_analysis

program once using the CDT logic and once using the IDT logic. The artificially generated
sequences of events provide a base to which the counting rates that obtained using the
two counting algorithms can be compared. The Monte Carlo simulations also provide
the opportunity to test the counting logics with a very wide range of activities, which
is difficult to achieve in practice.
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4.2 results from the comparison

4.2.1 Results from experimental setup 1: RCTD1 – MAC3 – CAEN desktop digitizer

Using the first experimental setup nine 3H sources with activities from 1200 Bq to
47 kBq and nine 90Sr/90Y sources with activities from 920 Bq to 14.5 kBq were measured
simultaneously with the two counting systems. The coincidence resolving time of the
MAC3 module is 40 ns and the dead-time base duration is 50 µs. The same parameters
are used in the list_mode_analysis code that applies the CDT and IDT counting
algorithms. Ten consecutive measurements were performed on each source using the
MAC3 module with 60 s acquisition time for 3H and 30 s acquisition time for 90Sr/90Y.
The digitizer acquisition time was set to 600 s and 300 s for the 3H and 90Sr/90Y
measurements respectively. The activities of the samples were calculated from the
obtained coincidence counting rates using the TDCR07c program [93] using the same
TDCR model parameters (kB value, cocktail density and elemental composition). The
specific activities of the sources from the MAC3 data and the digitizer data using the
two counting algorithms are shown in Figure 4.5 for 3H and in Figure 4.6 for 90Sr/90Y.
Note the break in the y axis in the figures.
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Figure 4.6: Specific activity of the 90Sr/90Y
sources with experimental setup 1.

We observed that there is a sharp drop in the counting rates obtained with the CAEN

DT5751 compared to the MAC3 counting rates. It was later found out that the specific
computer that was connected to the digitizer was unable to write all the incoming
events to the hard disk drive at counting rates higher than around 30 kcps for 3H and 4
kcps for 90Sr/90Y. The lower limit for the latter comes from the much higher number of
photons detected on average due to the much higher mean energy of the β spectrum.
The more photons, the more data must be recorded in the memory of the computer.
In all later considerations in this chapter concerning the CAEN digitizer measurements
only the results where the digitizer was able to record all incoming data were used.
The problem was eliminated in all further studies using the digitizer.
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The difference between the IDT results (XIDT) and the CDT results (XCDT) is calculated
as:

∆ =
XCDT −XIDT

XIDT
× 100%. (4.1)

If we consider only the measurements where the digitizer was able to record all incom-
ing events, we see that the activities obtained with the two counting algorithms agree
within 0.20% for the 3H measurements and within 0.27% for the 90Sr/90Y measurements
(see Figure 4.2). The results from this experiment show that the two counting algorithms
return very similar results. Nevertheless, this setup did not allow the study of very
high counting rates, where lie both the possible benefits of the IDT algorithm and the
possible differences between CDT and IDT.

4.2.2 Results from experimental setup 2: RCTD1 – MAC3 – nanoTDCR

Four of the 3H sources (activities from 4.7 kBq to 47 kBq) and three of the 90Sr/90Y
sources (activities from 900 Bq to 8 kBq) were chosen to be measured on the second
experimental setup. The coincidence window of the MAC3 module and the nanoTDCR

device was set to 40 ns and the dead-time base duration to 50 µs in all measurements.
The high-voltage of the RCTD1 is automatically set on and off in accordance with
the MAC3 acquisition. Therefore, it is necessary that the nanoTDCR counting time is
shorter than the MAC3 counting time to ensure that the high-voltage of the detector is
on. To achieve that, the acquisition time of the MAC3 was set to 60 s in the live time
counter and that of the nanoTDCR to 60 s in the real time counter. This leads to slightly
shorter counting times with the nanoTDCR, thereby increasing the uncertainty in these
measurements in comparison with the MAC3.

The results from the comparison of the acquisition systems are shown in Table 4.1.
The activities of the sources were calculated using the TDCR07c code. The same kB
parameter and cocktail data was used to analyze both data sets. The average and the
statistical uncertainty of each quantity of interest for a given source are calculated from
a set of ten measurements.

The direct comparison shows excellent agreement between the nanoTDCR implement-
ing the IDT counting algorithm, and the MAC3 implementing the CDT counting algorithm.
The differences in calculated activity are less than 0.15% for all four measurements of
3H samples with activities from 4.5 kBq and 46 kBq and less than 0.25% for the three
measurements of 90Sr/90Y with activities from 900 Bq to 8 kBq.

4.2.3 Results from experimental setup 3: CDT and IDT implemented in the FPGA of nanoTDCR

Five sources containing 3H, 14C, 63Ni, 90Sr/90Y and 222Rn in UltimaGold LLT liquid
scintillation cocktail were measured using the TDCR-SU detector and nanoTDCR counting
device. The nanoTDCR was set to acquire simultaneous CDT and IDT counting measure-
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Nuclide
MAC3

Activity, Bq

nanoTDCR

Activity, Bq

MAC3 and nanoTDCR difference

D T Efficiency Activity

3H

4591(23) 4596(19) 0.38% 0.61% 0.25% 0.11%

13896(22) 13892(48) 0.14% 0.32% 0.17% -0.03%

23265(61) 23297(96) 0.24% 0.34% 0.10% 0.14%

46184(48) 46240(120) 0.12% 0.12% -0.01% 0.12%

90Sr/90Y

915(1) 913(2) 0.06% 0.08% 0.18% -0.20%

3877(3) 3878(5) 0.05% 0.02% 0.01% 0.04%

7987(4) 8007(26) 0.14% -0.06% -0.17% 0.25%

Table 4.1: Comparison of the counting rates, calculated efficiency and activity with the second
experimental setup.

ments. The dead-time base duration was set to 50 µs and the coincidence resolving
time to 40 ns. Using the TDCR07c program the activities of the pure β sources were
calculated from the ratios T/AB, T/BC and T/AC obtained with the two counting al-
gorithms. The average and the standard deviation σ for the quantities of interest for
each measured source were calculated from a set of ten measurements. The results are
shown in Table 4.2.

Nuclide
CDT

Activity, Bq

IDT

Activity, Bq

CDT and IDT difference

D T Efficiency Activity

3H 871.80(30) 871.80(30) 0.00% 0.00% −0.01% 0.01%
14C 2327.0(30) 2325.2(30) 0.02% 0.00% −0.01% 0.04%

63Ni 2110.5(10) 2109.5(10) 0.04% 0.00% −0.03% 0.07%
90Sr/90Y 3010.2(26) 3009.7(25) 0.01% 0.00% −0.01% 0.01%

222Rn

3050.9(42) 3039.0(45) 0.21% 0.00% −0.18% 0.39%

1825.1(16) 1818.0(14) 0.21% 0.00% −0.18% 0.40%

1016.8(10) 1013.0(10) 0.20% 0.00% −0.17% 0.38%

147.06(50) 146.41(60) 0.23% 0.00% −0.21% 0.44%

60.62(30) 60.31(30) 0.25% 0.00% −0.24% 0.51%

Table 4.2: Comparison results with experimental system №3 – CDT and IDT implemented in the
FPGA of the nanoTDCR.

An excellent agreement between the IDT and the CDT counting results is observed
for the measurements of 3H, 14C, 63Ni and 90Sr/90Y. The difference in the double



4.2 results from the comparison 55

coincidences counting rates is less than 0.05% in all measured samples and no difference
is observed in the triple coincidence counting rates. The differences in the calculated
activities between the IDT and the CDT are less than 0.07%.

The detection efficiency for the 222Rn source was calculated using a dedicated com-
puter code. It assumes 100% detection efficiency for the α emissions and applies the
TDCR model for the two β emissions in the 222Rn decay chain. Most importantly, it
applies a correction for the decay of 214Po during the dead-time imposed by 214Bi. The
code was developed by Ph. Cassette1, and a more complete description is to be given
elsewhere. The corrected counting rate R0 of 214Po is calculated in the following way:

R0 = Re
−λτ, (4.2)

where the experimentally measured 214Po counting rate is R, λ is the 214Po decay
constant and τ is the dead-time base duration. In the case of the IDT logic the dead-time
for the D channel is smaller than that for the CDT logic. As no specific correction for
IDT exists so far, the same correction was used for both methods. It is possible that
differences in the activity calculated by the two methods are due to the need for a
different dead-time correction. Differences up to 0.51% between the two counting logics
were observed in the 222Rn experiments. The differences are in the double coincidence
counting rate estimates which propagate to the estimates of the activity. The most likely
explanation for this effect is the possibility of the IDT logic to misclassify T events as
D events. This can be seen well in Figure 4.1. Looking at the IDT logic, there exists the
possibility of a single event to trigger the dead time in one channel. In this case, the
other two channels will remain open. If a triple event is registered during the dead-time
of the channel that registered the single, then the two open channels would register
a double. The channel that is in dead-time would extend its dead-time and will not
register an event.

4.2.4 Simulation results: Monte Carlo simulation of 3H measurements

The Monte Carlo code was used to generate list-mode files of 3H measurements
with activities up to 200 kBq. The output data of the code was processed using the
list_mode_analysis program. The dead-time base duration and the coincidence win-
dow for both counting logics were the same – 50 µs and 40 ns respectively. The
coincidence counting rates (CDT or IDT) were compared to the reference coincidence
counting rates of the Monte Carlo summary file. The ratio of the CDT to Monte Carlo
and the IDT to Monte Carlo double and triple counting rates is shown in Figure 4.7. The
difference in double coincidences counting rates is less than 0.07% in all measured sam-
ples and between the triple coincidences counting rates are less than 0.16%. However,
the two algorithms do not agree well with the Monte Carlo reference counting rates.
The differences are within 0.36% in the D channel and up to 1.2% in the T channel

1 The code was recieved in a private communication.
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(Figure 4.7, middle). A possible explanation for these deviations is the very short 40 ns
coincidence window for 3H. This problem is expanded upon in Chapter 9.
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Figure 4.7: Comparison between the two counting algrorithms and the Monte Carlo reference
counting rates and activities for a simulated 3H measurement.

The TDCR07c program was used to calculate the activity and the same cocktail
density, composition and kB parameters were used in all calculations. The ratio of the
activities calculated with the CDT and the IDT counting logics to the activity calculated
from the raw Monte Carlo counting rates is shown in Figure 4.7 (bottom). Although a
significant amount of the triple coincidences were missed by the two algorithms due
to the short coincidence window, the TDCR model compensates for some of the losses.
There is an excellent agreement between the two for 3H activities up to 80 kBq.

The IDT counting algorithm has an advantage as in this case it results in the same
coincidence counting rates and calculated activities, but with a significant reduction in
the D dead-time (see Figure 4.7, top). For example, for 9700 Bq activity the D dead-time
of the IDT logic is 28.8% and the dead-time of the CDT logic is 38.8%. This leads to 16.3%
increase in the D live-time for IDT logic compared to CDT logic. The increase in the
live-time is 36.4% at 19 kBq and 81.5% at 38 kBq.

In order to study the influence of the effect of coincidence window on the TDCR

results, the first five 3H Monte Carlo generated measurements were processed with
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100 ns coincidence window

D count rate, cps T count rate, cps Activity, Bq
MC data IDT bias CDT bias MC data IDT bias CDT bias MC data IDT bias CDT bias

95.19 −0.35% −0.34% 43.72 −1.24% −1.24% 189.88 0.48% 0.48%
491.01 −0.28% −0.27% 225.58 −1.07% −1.07% 979.08 0.44% 0.50%
16.26 −0.31% −0.31% 437.11 −1.15% −1.15% 1901.95 0.51% 0.49%
4915.73 −0.26% −0.23% 2256.30 −1.01% −1.01% 9809.87 0.46% 0.51%
9522.37 −0.29% −0.21% 4368.84 −0.87% −0.87% 19014.31 0.25% 0.43%

200 ns coincidence window

D count rate, cps T count rate, cps Activity, Bq
MC data IDT bias CDT bias MC data IDT bias CDT bias MC data IDT bias CDT bias

95.30 −0.15% −0.16% 43.67 −0.59% −0.59% 190.52 0.25% 0.25%
491.61 −0.11% −0.12% 226.01 −0.55% −0.55% 979.89 0.29% 0.28%
952.69 −0.19% −0.17% 437.11 −0.62% −0.62% 979.89 0.29% 0.28%
4916.44 −0.05% −0.07% 2256.06 −0.45% −0.45% 9813.26 0.33% 0.31%
9520.00 0.03% 0.11% 4368.84 −0.24% −0.25% 19014.31 0.23% 0.39%

300 ns coincidence window

D count rate, cps T count rate, cps Activity, Bq
MC data IDT bias CDT bias MC data IDT bias CDT bias MC data IDT bias CDT bias

95.40 −0.16% −0.16% 43.83 −0.60% −0.60% 190.18 0.26% 0.23%
492.73 −0.19% −0.18% 226.85 −0.57% −0.57% 980.74 0.19% 0.20%
952.01 −0.17% −0.15% 437.73 −0.48% −0.49% 1897.56 0.10% 0.13%
4915.25 −0.05% 0.00% 2255.75 −0.32% −0.32% 9808.92 0.21% 0.32%
9523.22 −0.13% −0.04% 4368.16 −0.28% −0.28% 19019.81 0.01% 0.18%

Table 4.3: Tests of the influence of the coincidence resolving time on two counting algorithms.
The bias is calculated relative to the Monte Carlo reference.

100 ns, 200 ns and 300 ns coincidence windows. The bias of both the CDT and the IDT

counting logics against the Monte Carlo ground truth is calculated as in equation 4.1.
The results are shown in Table 4.3 and show that with the increase of the coincidence
window the differences between the Monte Carlo data and the estimated D and T
counting rates, efficiencies and activities tend to decrease. This is true for both the CDT

and the IDT estimates. These results imply that 40 ns coincidence window duration is
too short for 3H measurements and it seems that 200 ns or even 300 ns coincidence
windows would be a better choice. This phenomenon is expanded upon in Chapter 9

and in [105].

conclusions

A comprehensive experimental comparison of the IDT and the CDT counting logics was
performed. The results were backed up by analysis of artificially generated sequences
of events by means of Monte Carlo simulations. An excellent agreement was observed
between the two counting logics for measurements of the pure β-emitting radionuclides
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3H, 14C, 63Ni and 90Sr/90Y. In the case of 222Rn however, there are differences up to
0.51% in the 222Rn activities calculated by the two counting logics. The differences are
in the double coincidence counting rate estimates which propagate to the estimates
of the activity. The most probable reason was identified as the misclassification of T
events as D events by the IDT logic, which could happen in certain cases. Due to this,
and its general complexity, the IDT logic was excluded in the list_mode_analysis code
after this study.

The analysis of the Monte Carlo simulated measurements of 3H indicate an excellent
agreement between the two methods. The observed differences are less than 0.11% for
activity up to 38 kBq. The IDT counting algorithm seems to have an advantage in this
particular case as it results in the same counting rates and calculated activities, but with
a significantly reduced dead-time in the D channel. The performed simulations also
indicate that a 40 ns coincidence resolving time is insufficient for 3H measurements as
the measured counting rates are significantly lower that the ones generated by the Monte
Carlo code. Better agreements can be achieved with 200 ns or even 300 ns coincidence
window. The last discovery paved the way for the quest for finding the optimal resolving
time (Chapter 9) and the evaluation of accidental coincidences (Chapter 8) which is
necessary for the use of long coincidence windows. The findings in this study were
published in [103].



5
T H E T I M I N G O F D E T E C T E D P R O M P T S C I N T I L L AT I O N E V E N T S

D
ue to the finite life-time of the excited states of the fluorescent molecule,
the scintillation photons are emitted in different times with respect to the
moment of radioactive decay. This moment is however unknown in a typical

LS measurement as radioactive decay is a stochastic process. Therefore, there is no
reference time to which the time of emission of individual scintillation events could
be linked to. What is realistically measurable with a LS counting system, however, is
the distribution of the time intervals between signals from two PMTs, i. e., one giving
the reference time and the other giving a stop signal. The signals themselves are the
product of detected scintillation photons. The distribution is based on the probability
density of the time difference between the detected signals in each of the two PMTs.
This difference is given by the cross-correlation operation which is usually used in
the field of signal processing, thus, for the sake of simplicity, this distribution will
be hereafter called the cross-correlation distribution. The purpose of this chapter is to
present a theoretical model of the cross-correlation distribution, derived after initial
assumptions about the nature of the light emission and detection processes.

There are several questions regarding the cross-correlation distribution that this thesis
aims to answer:

• Can the distribution of accidental coincidences be distinguished from the distri-
bution of true coincidences?

• What is the necessary coincidence window with that needs to be used in order
not to miss true coincidences?

• Can the information contained in the time distribution of scintillation events be
used to calculate the mean number of detected photons, thus contributing to and
improving current activity standardization methods?

• What are the ratios of detected prompt and delayed fluorescence events to the
total detected? Do these ratios depend on the scintillator, nuclide, coincidence
window and other parameters?

Finding answers to these questions requires first a proper understanding of how the
detected scintillation events are distributed in time in regard to one another. The second
necessity is the development of a good model of this time distribution.

When the time of detection of a PMT signal is considered it concerns only the first
photon detected in that PMT within the coincidence window (primary event). This is
done in order to ensure that only true signals are considered and PMT afterpulses are

59
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Figure 5.1: A schematic illustration of the acquisition of the cross-correlation distribution.

ignored. Considering the timing of the primary events only is adequate, as the primary
event forms the rising edge of the PMT signal and its timestamp is recorded by the
analyzing electronics. Note that, when deriving the cross-correlation distribution, we
will assume that the time of emission of a photon is the same as the time that it hits
the photocathode of a PMT. This assumption is reasonable as the distance between the
center of the scinitllation vial and the photocathode is less than two centimeters. This
corresponds to roughly 100 ps with the speed of light.

Considering a two PMT LS detector, there is a sequence of events that can be followed
from the initial decay of a radionuclide withing the scintillator to the detection of
a primary event by the electronics. It is shown schematically in Figure 5.1. We will
limit the discussion to β-emitters, but the logic would be similar for the other types
of radionuclides. Following a radioactive decay, an electron with a given energy E is
released into the liquid scintillator. The charged particle gradually loses its energy in
interactions with the molecules of the scintillator, creating a total of N excited states in
the process. Most of the excited states will de-excite non-radiatively, but a fraction will
produce scintillation photons. Of these photons some will be absorbed by the scintillator
and some will be lost in the walls of the optical chamber. A part of the emitted photons
can reach the photocathodes of the PMTs. The photocathodes usually have a quantum
efficiency between 20% and 40% thus not all photons that reach them will produce
photoelectrons by the photoelectric effect. In practice, the PMTs that are used are such
that even a single photoelectron produces a measurable signal with practically 100%
probability. Following the sequence of events, an electron depositing energy E in the
scintillator will result in N excited states of which n will be detected by the detector –
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k of those in one PMT and (n− k) in the other. The time interval between two primary
events will, in fact, be the time between the first from k photons detected in one PMT

and the first from (n− k) photons detected in the other PMT.
The quantity of interest in this work is the cross-correlation distribution D(∆t) of the

time intervals between the primary events in a two PMT detection system.

5.1 distribution of the time intervals between primary events

Consider the case where an electron with energy E is absorbed by the scintillator and
produces n excited states x1, x2, . . . , xn that will all emit photons that will be detected.
Let the probability (pi) for each state to de-excite at a given time t is an exponential
distribution with a decay constant λ:

pi(t) = λe
−λt. (5.1)

The function of interest here is the distribution of the time of emission from the state
that de-excites first, as that state will form the rising edge of the detector signal and
will serve as the start or stop in the timing circuit. The probability for the state x1 to be
the first de-exciting is the probability of x1 to de-excite at moment t and all the other
states to de-excite after it:

px1(t) = λe
−λt

[∫∞
t

λe−λtdt

]n−1
= λe−nλt, (5.2)

where the second term is the probability of all other states to de-excite after x1. The
probability of the first photon arriving at time t from any of the n states is then:

Pi(t) = px1 + px2 + ... + pxn = nλe−nλt, (5.3)

where i denotes one of the PMTs. A schematic illustration of this logic is given in
Figure 5.2.

For a detector system with two PMTs the total number of detected photons n will be
the sum of k detected in the one PMT and n− k detected in the other. If the two PMTs

are denoted with A and B, and if the first emitted photon is assumed to be the first to
be detected, then, according to equation (5.3), the probability for detection of the first
photon at a time tA in PMT A or tB in PMT B will be:

PA(tA) = kλe
−kλtA

PB(tB) = (n− k)λe−(n−k)λtB
(5.4)

In the following subsections the probability density function (pdf) PAB(tA − tB) will
be developed.
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Figure 5.2: A schematic illustration of the probability density function of the emission time of
the first from n emitted photons. It is equivalent to the probability of a state to de-excite at a
time t multiplied by the probability of all other states to de-excite at a later moment.

5.1.1 Probability density function of the time between two exponentially distributed random
variables

Let X and Y be two exponentially distributed random variables. The pdf of X is τe−τx

and the pdf of Y is µe−µx. The joint pdf of X and Y is:

PX,Y(x,y) = τµe−τxe−µy (5.5)

Let Z = Y−X. The function of interest is the pdf of Z. First, the cumulative distribution
function of Z is FZ(z), i. e., the probability that Z 6 z, thus the question is what is the
probability that Y −X 6 z. For a given z, x and y must satisfy the condition y− x = z.
This can be calculated using the following integral. First, integrate equation (5.5) with
respect to y, and then with respect to x. Note that y travels from 0 to x+ z, and x travels
from 0 to infinity. Thus,

P(Z 6 x) =
∫∞
0

τe−τx
(∫x+z
y=0

µe−µy dy

)
dx. (5.6)

The inner integral is 1− e−µ(x+z). The equation can then be solved for x:

P(Z 6 z) =
∫∞
0

(
τe−τx − τe−µze−(τ+µ)x

)
dx

= 1−
τ

τ+ µ
e−µz,

(5.7)
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which gives the comulative distribution function of the difference of two exponentially
distributed random variables. For the pdf fZ(z) of Z, the cumulative distribution
function can be differentiated and the result is:

fZ(z) =
τµ

τ+ µ
e−µz, for z > 0. (5.8)

Note here, that equation (5.8) only deals with positive values of z. For negative z the
expression is similar, but the argument in the exponent will be positive τ. Equation
(5.8) gives the pdf of the time of arrival between two exponentially distributed random
variables with different decay parameters µ and τ.

5.1.2 Probability density function of the time between primary events

Now consider the case where there are n photons, each of them having an exponential
distribution in time of the type λeλt. These n photons are all detected by a system with
a two PMTs, PMT A and PMT B. Let PMT A be the reference PMT, which will give the
start signal and let PMT B be the secondary PMT, which will give the stop signal. The
distribution of the time interval between the first photon that hits the secondary PMT

and the first photon that hits the primary PMT will be derived hereafter.
If there are a total of k photons incoming on the primary PMT, the time of detection

of the primary event, according to (5.3) is

PA(tA) = kλe
−kλtA ,

where kτ is the effective decay constant that the PMT observes. Similarly, for the sec-
ondary PMT there are (n− k) detected photons and the time distribution of the primary
event is

PB(tB) = (n− k)λe−(n−k)λtB ,

where (n− k)λ is the effective decay constant that is observed by the secondary PMT.
Substituting τ = kλ and µ = mλ in (5.8), the pdf of the time between the primary

events in the two PMTs QAB(∆tAB), where one PMT detected k photons and the other
detected (n− k) photons, is:

QAB(∆tAB) =
k(n− k)

n
τe−(n−k)λ∆tAB , valid for t > 0, (5.9)

where ∆tAB = tA − tB.
Now consider a simplified source of light which emits exactly n number of photons

every time it is activated, and they are detected by a two PMT system. The probability,
then, to have k number of detected photons in the primary PMT and (n− k) number of
photons in the secondary PMT can be calculated by the binomial distribution as:

B(n,k) =
n!

k!(n− k)!
εkA ε

n−k
B (5.10)
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Figure 5.3: Histogram of the difference between the primary events in PMT B and PMT A. The
figure is in linear scale. The black line is the theoretical model according to equation 5.11.

Combining equations (5.9) and (5.10) and summing over all possible combinations
the pdf SAB(tAB) of the time difference ∆t between the primary events is obtained:

SAB(∆tAB) =
1

C

n−1∑
k=1

n!
k!(n− k)!

εkA ε
n−k
B

k(n− k)

n
τe−(n−k)τt, valid for t > 0. (5.11)

Note that, the summing of k is from 1 to n− 1. That must be so, because events with
0 photons in either PMT will not result in a detected coincidence. Because of that, the
equation is also not normalized. The normalization factor C is equal to:

C =

n−1∑
k=1

n!
k!(n− k)!

εkA ε
n−k
B , (5.12)

or the sum of probabilities for detected events.

validation of the equations In order to test whether equation (5.11) gives
correct results, the Monte Carlo code described in Appendix A is used. A small
modification is included to remove the Poisson distributed number of photons for a
given energy and substitute it with user selectable fixed number of photons produced in
every decay event. The comparison can also serve as a visualization of the distribution
for various parameters.

The code was used to simulate measurements with 2, 3, 5 and 10 photons. The
obtained histograms are plotted alongside the normalized equation (5.11) with the
same parameters. The results from the comparison of the analytical equation and the
Monte Carlo simulation are shown in Figure 5.3. An excellent agreement between the
analytical function and the Monte Carlo simulated histogram can be observed. Note
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that, equation (5.11) describes only events where PMT A gives the start signal and PMT B
the stop signal. The symmetric case will be described later. It is interesting to note how
the shape of the distribution changes with the change in number of detected photons.
When increasing the total number of detected events, the height of the distribution
increases and it becomes narrower.

5.1.3 Response function of the detector

What should also be modelled when describing the distribution of the time between
detections of primary events is the response function of the detector. For large time
differences of tens of nanoseconds it would be negligible, but it plays a major role if
very short time intervals are considered. The time response of the PMTs and associated
electronics is assumed to be described by a Gaussian function of the type:

G(t;µi,σi) =
1√
2πσi

exp

(
−
(t− µi)

2

2σi2

)
, (5.13)

where i = A,B for the two PMTs. It is also assumed that the response function of
the detector applies to the primary event only, i. e., the first photon that produces a
photoelectron in the PMT is the first event that is registered by the electronics. This
model is adequate as the rearrangement of signals from individual photons in the PMT

would be unlikely and the major contribution to the uncertainty in the final recorded
timestamp comes from the analyzing electronics. With this assumption, the probability
PGi to regster a pulse with a timestamp ti, which corresponds to the detection of the
first event in one of the PMTs, becomes:

PGA(tA;n,k, λ,µA,σA) = PA(tA;n,k, λ)∗GA(t;µA,σA),

PGB(tB;n,k, λ,µA,σA) = PB(tB;n,k, λ)∗GB(t;µB,σB),
(5.14)

where ∗ indicates convolution.
Here we are interested in the probability to obtain a time difference ∆tAB = tA − tB

between the pulses from PMTs A and B, which is given by the cross-correlation of
PGA(t) and PGB(t). Similarly, the time differences between B and A, ∆tBA = tB − tA,
is given by the cross-correlation of PGB(t) and PGA(t).

PGAB(∆t) = PGA(tA) ? PGB(tB),

PGBA(∆t) = PGB(tB) ? PGA(tA),
(5.15)

where ? denotes the cross-correlation operator. The sum of the distributions PGAB
and PGBA will be referred to as the cross-correlation distribution between PMTs A
and B. Noting that the cross-correlation of functions f(t) and g(t) is equivalent to the
convolution of f(t) with g(−t), one also gets:

PGAB(∆t) = PGA(tA) ∗ PGB(−tB),

PGBA(∆t) = PGB(tB) ∗ PGA(−tA).
(5.16)
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Then, substituting equations (5.14) in (5.16) and using the associativity of the convolu-
tion operator, the equations can be written as:

PGAB(∆tAB) = (PA(tA) ∗ PB(−tB)) ∗ (GA(tA) ∗GB(−tB)),

PGBA(∆tBA) = (PB(tB) ∗ PA(−tA)) ∗ (GA(tB) ∗GA(−tA)).
(5.17)

In order to simplify the notation, it is useful to define ∆t = ∆tAB = −∆tBA. Explicitly,
the distribution PAB(∆t;n,k, λ) = PA(tA) ∗ PB(−tB) is given by:

PAB(∆t;n,k, λ) =


k(n−k)
n λe−(n−k)λ∆t, for ∆t > 0,

0, for ∆t 6 0.
(5.18)

Similarly, for PBA(∆t;n,k, λ) = PB(tB) ∗ PA(−tA):

PBA(∆t;n,k, λ) =

0, for ∆t > 0,

k(n−k)
n λe−kλ∆t, for ∆t 6 0.

(5.19)

Noting that the convolution of two Gaussian distributions is also a Gaussian distribution
and that G(−t;µ,σ) = G(t;−µ,σ), one gets:

GAB(∆t;µ,σ) = GA(tA;µA,σA) ∗GB(tB;−µB,σB),

GBA(∆t;µ,σ) = GB(tB;−µB,σB) ∗GA(tA;µA,σA),
(5.20)

with µ = µA − µB and σ2 = σ2A + σ2B. Finally, for the cross-correlation distributions
PGAB(t) and PGBA(t), the following equations are obtained:

PGAB(∆t;n,k, λ,µ,σ) = PAB(∆t;n,k, λ) ∗GAB(∆t;µ,σ) (5.21)

PGBA(∆t;n,k, λ,µ,σ) = PBA(∆t;n,k, λ) ∗GBA(∆t;−µ,σ), (5.22)

The convolution of an exponential distribution of the type f(x) = τe−τx and a
Gaussian distribution is the exponentially modified Gaussian distribution with the
form:

EMG(t; τ,µ,σ) =
τ

2
e
τ
2(2µ+τσ

2−2t)erfc
(
µ+ τσ2 − t√

2σ

)
, (5.23)

where erfc denotes the complementary error function erfc(x) = 1− erf(x). In order to
evaluate the convolutions in (5.21) and (5.22), the following substitutions can be made:
t = ∆t and τ = kλ in the case of PGAB and t = −∆t and τ = (n− k)λ in the case of
PGBA. The total distribution of the time intervals ∆t then becomes:

Ξ(∆t;n,k, λ,µ,σ) =
1

n

(
k EMGAB (∆t; (n− k)λ,µ,σ)

+ (n− k) EMGBA (−∆t;kλ,−µ,σ)
)

. (5.24)
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Figure 5.4: Histogram of the difference between primary events in PMT B and PMT A. The black
line is the theoretical model calculated using equation 5.25.

5.1.4 Binomial statistics of the number of detected events

The probability to detect exactly k photons in one PMT and m = n− k in the other out
of n detected photons per ionizing particle is given by the binomial distribution. Thus,
summing over all possible n and k pairs one obtains the cross-correlation distribution
between two PMTs for a fixed number of exactly n detected photons:

B(∆t;n, λ, εA, εB,µ,σ) =
n−1∑
k=1

(
n

k

)
εkAε

n−k
B Ξ(∆t;n,k, λ,µ,σ), (5.25)

where εA and εB are the relative efficiencies of the PMTs which satisfy the equality
εA + εB = 1. It should be noted that the binomial coefficients are summed from 1

to n − 1, because events with zero hits in either PMT will not result in a detected
coincidence.

The validity of equation 5.25 was tested using the Monte Carlo code. The program
was used to simulate an artificial measurement in which each decay produces exactly n
detected photons, i.e., no Poisson statistics for the average number of detected photons.
The Gaussian jitter of the PMTs is set to 0.6 ns and the decay time of the scintillator to 4
ns. The analytical time distribution was calculated using equation (5.25) with the same
parameters. The comparison is shown in Figure 5.4. Excellent agreement was found
between the theoretical model and the Monte Carlo simulation.
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Figure 5.5: Histogram of the difference between the primary events in PMT B and PMT A. The
black lines are the calculations with the theoretical model given in equation 5.26.

5.1.5 Poisson statistics of the number of detected events

In a real situation the number of excited states for a deposited energy E will not be
a fixed number n, but will follow a Poisson distribution with a mean number n̄. By
summing through all possible n we obtain:

Π(∆t; n̄, λ, εA, εB,µ,σ) =
∞∑
n=2

n−1∑
k=1

n̄n

n!
e−n̄

(
n

k

)
εkAε

n−k
B Ξ(∆t;n,k, λ,µ,σ), (5.26)

The validity of equation (5.26) was also tested using the Monte Carlo code. The
program was used to simulate an artificial measurement of a monoenergetic source
with a constant mean number of detected photons. The Gaussian jitter of the PMTs is set
to 0.6 ns and the decay time of the scintillator to 4 ns. The analytical time distribution
was calculated using equation (5.26) with the same parameters. The comparison is
shown in Figure 5.5. Excellent agreement was found between the theoretical model and
the Monte Carlo simulation. It is interesting to note that the slope of the long tailing is
independent of the number of photons, because, after a long enough time, all exponents
die out, and what is left are only the exponents which correspond to 1 photon per PMT.
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5.2 the cross correlation distribution and the free parameter model

Equation (5.26) is sufficient to describe the cross-correlation distribution that would
result in the case of mono-energetic electrons. If the source is a β-emitting radionuclide,
then its β-spectrum must be taken into account. Introducing the spectrum of the
deposited energy in the scintillator S(E), the final cross-correlation distribution becomes:

D(∆t;ϕ, λ, εA, εB,µ,σ) =
1

L

∫Emax

0

S(E)︸ ︷︷ ︸
Energy spectrum

∞∑
2

(n̄(E;ϕ))n

n!
e−n̄(E;ϕ)

︸ ︷︷ ︸
Poisson statistics

n−1∑
k=1

(
n

k

)
εkAε

n−k
B︸ ︷︷ ︸

Combinatorial term

Ξ(∆t;n,k, λ,µ,σ)︸ ︷︷ ︸
Cross-correlation

dE, (5.27)

where Emax is the maximum energy in the particle spectrum S(E), µ is the difference
in the static time delay of the two PMTs and σ is the quadratic sum of the standard
deviation of the Gaussian time jitters in the two PMTs. L is a normalization coefficient
equal to the probability of all detected events:

L =

∫Emax

0

S(E)

∞∑
2

(n̄(E;ϕ))n

n!
e−n̄(E;ϕ)

n−1∑
k=1

(
n

k

)
εkAε

n−k
B dE, (5.28)

which is necessary because events with less than one detected photon per PMT will
not lead to coincidence and will not be detected. The Poisson distribution accounts
for the probability to have n detected photons in a given decay if there are n̄ photons
detected on average for a particular energy. The mean number of detected photons n̄
with respect to the deposited energy in the cocktail E can be obtained as1.

n̄(E;ϕ) = EQ(E)ϕ, (5.29)

whereQ(E) is a factor that takes into account the ionization quenching and is dependent
on the energy of the particle as well as on the stopping power of the particle in the
scintillator. The parameter ϕ is the figure of merit (FOM) and it is equal to the mean
number of detected photons per keV of effective energy released into the scintillator -
i. e., after taking into account ionization quenching. The most widely used description
of the ionization quenching function Q(E) is given by Birks’ semi-empirical equation
(1.12).

The cross-correlation term Ξ(∆t) gives the probability to have a given ∆t between
the first photon from k total detected in one PMT and the first photon from (n− k)

total detected in the other PMT. It is given by Ξ(∆t;n,k, λ,µ,σ) (explicitly given in
equation (5.1.3)) and is a sum of two exponentially modified Gaussian distributions.
The parameters µ and σ are the Gaussian centroid and standard deviation, respectively

1 See equation (2.18) in Section 2.1 for a derivation.
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and τ is the decay constant of the exponential distribution. The two terms in the sum
in equation (5.1.3), EMGAB and EMGBA, consider the two cases tA − tB > 0 and
tA − tB 6 0.

One of the parameters that determine the cross-correlation distribution, as shown
in equation (5.2), is the FOM ϕ. Thus, if the decay constant of the scintillator λ and the
parameters of the response function of the system (µ,σ, ε) are known, then ϕ is the only
free parameter left. If the derived model describes the timing properties of the detected
scintillation events, then the FOM can be estimated from the experimentally obtained
cross-correlation distribution. The FOM is a key parameter as it is used to calculate the
detection efficiency and, from it, the activity of the sample. The detection efficiency
for coincidences in a two PMT system φAB is given by the free parameter model in LS

counting [106]:

φAB =

∫Emax

0

S(E)
(
1− e

−n̄(E;ϕ)
2

)2
dE, (5.30)

where the factor 2 stays for the number of PMTs in the system. The only parameter here
that needs to be determined in order to calculate the detection efficiency is ϕ. A similar
equation is derived for a three PMT system and is shown in Section 2.1. By knowing the
detection efficiency, the activity of the sample A is calculated as:

A =
nAB

φAB
, (5.31)

where nAB is the net (background corrected) counting rate of the two PMTs in coinci-
dence. The value of ϕ can also be used to determine the average number of detected
photons n̄ in the case of measurements of nuclides with an energy spectrum S(E):

n̄ =

∫Emax

0

S(E) EQ(E)ϕ dE. (5.32)

The correct calculation of the energy spectrum S(E) is very important for the ra-
dionuclide standardization by LS counting and for many β-emitters the reliability of the
β-spectra calculation was carefully evaluated [107, 108]. For a given energy spectrum
and ionization quenching function, the relationship between the FOM and the average
number of detected photons n̄ is unambiguous so, the knowledge of either ϕ or n̄ is
sufficient to determine the detection efficiency and thus the activity of the sample.

Equations 5.2 and 5.28 are for two PMT counting systems. Similar equations can be
derived also for three PMT systems, considering that probability to have k photons
in PMT A, m photons in PMT B and l = n− k−m in PMT C can be calculated by the
multinomial distribution. Thus, the equivalent of equation (5.2) for a three PMT system
is:

D ′(∆t;ϕ, λ, ε,µ,σ) =
1

L ′

∫Emax

0

S(E)

∞∑
2

(n̄(E;ϕ))n

n!
e−n̄(E;ϕ)

n−1∑
k=1

n−k∑
m=1

n!
k!m!l!

εkAε
m
B ε
l
C Ξ(∆t;k,m, λ,µ,σ) dE,
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Figure 5.6: Cross-correlation distributions of 14C and 3H simulated using a Monte Carlo code
for two different values of ϕ.

(5.33)

where εA, εB and εC are the measured relative efficiencies of the PMTs and L ′ is the
normalization constant given by:

L ′ =

∫Emax

0

S(E)

∞∑
2

(n̄(E;ϕ))n

n!
e−n̄(E;ϕ)

n−1∑
k=1

n−k∑
m=1

n!
k!m!l!

εkAε
m
B ε
l
C dE (5.34)

5.3 discussion on the cross-correlation distribution

Several assumptions were made in order to derive the cross-correlation distribution.
Firstly, the decay of prompt fluorescence is assumed to be purely exponential. This as-
sumption may hold poorly in the case of a two or a three component liquid scintillation
cocktail. In multicomponent systems the energy of the ionizing particles is dissipated
predominantly in the solvent. The solvent itself does not emit light, however, and its
excitation energy is transferred non-radiatively to the primary fluorophore. The transfer
of energy is rapid, but the time it takes may be similar to the decay time of the primary
fluorescent molecule. If the case is such, the simple exponential equation (5.1) cannot
be used and a term accounting for the finite rise time of the scintillation signal should
be added. This would however overcomplicate the model and an analytical equation of
the cross-correlation distribution cannot be derived. This limitation of the model must
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be kept in mind when it is applied to fit real measurement data from a two component
scintillator.

The second important assumption that was made in order to derive equation (5.2) is
that the time jitter of the recorded timestamps of incoming photons is Gaussian with a
constant standard deviation σ and centroid µ. The timestamp of a PMT signal is given
by the analyzing electronics. In the simplest case it corresponds to the moment in which
the signal crosses a predefined threshold. Due to the differences in the amplitudes and
thus in the slopes of the rising edges of the incoming signals the recorded timestamp
will depend on the amplitudes of the signal. This will introduce a dependence of the
parameters of the response function of the detector, µ and σ, on the amplitude of the
signal. Moreover, the timing of steeper rising edges is more precise, therefore, the higher
the amplitude of the signal the lower the σ of the Gaussian distribution will be. Both
effects can be significantly minimized with the use of a constant fraction discriminator
and thresholds that are as low as possible.

A third challenge before the derived cross-correlation distribution is that it models
the prompt fluorescence only. In real scintillators, however, there is oftentimes a non-
negligible contribution of delayed fluorescence to the overall scintillation light. Moreover,
it is possible that delayed photons overlap in time with prompt photons, thus they
cannot be discriminated by the choice of a specific coincidence window. Even if the
time dependence of the intensity of delayed fluorescence is known, there would be a
significant difficulty to incorporate it into the derived cross-correlation distribution.
The start signals could be either from prompt or delayed photons and the stop signals
as well. Including delayed fluorescence would lead to a highly complex model with
many unknown parameters and would be difficult to use in practice.

When deriving the cross-correlation distribution, it was assumed that the time of
emission of a photon is the same as the time that it hits the photocathode of a PMT.
This assumption is reasonable as the flight time of photons between the center of
the scinitllation vial and the photocathode is in the order of 100 ps, and the timing
resolution set by the PMTs and analyzing electronics is larger than that. However, the
time spread due to the flight time of scinitllation photons should be accounted for if
the timing resolution of the detector is improved significantly.

There are several interesting observations that can be made when looking at the
cross-correlation equation (5.2) and Figures 5.5 and 5.6. What can be noticed first is
that with increasing average number of detected photons, the distribution becomes
narrower, with less pronounced tails, and more peaked. What we expect to see is a
relationship between some of the parameters of the distribution, e. g., the height or the
kurtosis, and the average number of photons.2

Another interesting possibility is to see whether equation (5.2) describes the cross-
correlation distribution of real measurements in a satisfactory manner. If so, it could be
used to fit experimental histograms, which would allow the estimation of the parameters

2 This is explored in Chapter 6.
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of the scintillator (λ), of the detection system (σ, µ) and, most importantly, the FOM of
the measurement (ϕ). The knowledge of the FOM and the ionization quenching function
is enough to calculate the detection efficiency for the given measurement and thus the
activity of the sample. The same two unknowns are required for the TDCR method to
calculate the activity. Thus, if possible to estimate the FOM from a cross-correlation
measurement it would be also possible to calculate the activity of the sample similarly
to the TDCR method. This possibility is explored more in-depth in Chapter 6.

The final determination of the activity using the cross-correlation method relies on
the free parameter model. The latter is also the basis of the TDCR method for primary
activity calculation. Due to that, both methods rely on the correct description of the
light output of the scintillator with respect to the deposited energy and, therefore, both
will be very sensitive to the used ionization quenching function. This is especially true
when dealing with low-energy emitters such as 3H.
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E S T I M AT I O N O F T H E D E T E C T I O N E F F I C I E N C Y U S I N G T I M E
D O M A I N I N F O R M AT I O N

I
n the preceding chapter it was shown that the overall shape of the cross-
correlation distribution depends on the mean number of detected photons
and on the spectrum of the deposited in the scintillator energy. This is

especially visible in Figure 5.6, where the distribution is calculated in the case of 3H and
14C for two different values of the figure of merit. The Monte Carlo simulations show
that with increasing average number of photons, i. e., increased detection efficiency,
the cross-correlation distribution becomes more narrow and peaks higher. It seems
reasonable to think that by analyzing an experimental distribution one would be able to
calculate the detection efficiency in a given measurement. Such possibility is explored
in this chapter.

In the following sections, the correlation between some superficial parameters of
the experimental cross-correlation distribution and the detection efficiency is explored.
The possibility to fit the analytical equation, derived in Chapter 5, to measurement
data and obtain the FOM is also examined. The approach is compared with the already
established TDCR method described in Section 2.2.

6.1 cross-correlation spectra of monoenergetic electrons

In order to study the properties of the cross-correlation distribution, experimental
spectra were acquired using the Compton coincidences method. The method uses a
three PMT TDCR counter and a γ-ray detector connected in coincidence. A collimated
external source of mono-energetic gamma-rays is placed such that the photon beam
passes through the LS-vial containing the scintillator that is studied. Most of the γ-rays
undergo Compton scattering and produce a Compton electron inside the cocktail. The
scattered γ-ray can interact with the γ detector and knowing its energy it is possible to
calculate the energy deposited in the cocktail by the Compton electron from the energy
conservation law. The method is described in more detail in Section 2.3.

In the current study the Compton coincidences detector that was used was the one
developed at Laboratoire National “Henri Becquerel” (LNHB)1. The detector consists of three
Hamamatsu R7600-200 square form factor PMTs [91] and a cadmium telluride (CdTe)
γ-ray detector. The PMTs are placed in a 3D printed housing which hosts an optical
chamber that is optimized for light collection and is covered with reflective foil with
98% reflectivity in the visible spectrum. The outputs of the PMTs are connected to a

1 The French primary radionuclide metrology institute.
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CAEN DT5751 digitizer [109] with 1 ns timing resolution. An external 77 MBq 241Am
source was used as a mono-energetic source of 59.54 keV γ-rays. The source was filtered
in order to remove the lower energy X-rays of 237Np. This setup allows to study the
response of the scintillator to electrons with energies from 2.5 keV to 8.5 keV in 270 eV
steps. The same setup was also used in the studies presented in Chapter 10 and a more
thorough description of the setup is given there.

The outputs of the three PMTs and the CdTe detector were all connected to the same
digitizer mentioned above. The timestamps and energies of each event were recorded in
list-mode files and were analyzed off-line using the list_mode_analysis program de-
scribed in Chapter 3. The software was used to obtain the cross-correlation distributions
for a number of deposited energies in the scintillator.

By using the Compton coincidences method it is possible to study the shape of
the cross-correlation distribution for monoenergetic electrons with known energies.
This removes some of the complexity of the distribution associated with the particle
spectrum and ionization quenching phenomena.

The setup was used to measure the cross-correlation distributions with respect to
the deposited energy in four different LS cocktails: UltimaGold, UltimaGold LLT, Hion-
icFluor and a home-made Toluene+PPO. The results for UltimaGold and UltimaGold
LLT are shown in Figures 6.1 and 6.2, respectively. The results from the other two
cocktails were omitted in the main text and are shown in the Appendix in Figures C.1
and C.2.
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Figure 6.1: Cross-correlation spectra D(∆t) of UltimaGold LS cocktail acquired by the Compton
coincidences method.
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UltimaGold LLT
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Figure 6.2: Cross-correlation spectra D(∆t) of UltimaGold LLT LS cocktail acquired by the
Compton coincidences method.

The results show that, with increasing deposited in the cocktail energy, the height of
the cross-correlation distribution also increases. As shown in Chapter 10, the energy of
the Compton electrons and the average number of detected by the LS system photons
are closely related. Thus, there exists a correlation between the height of the distribution
and the detection efficiency. This correlation will be explored in the subsequent section.

6.2 height of the cross-correlation spectrum

The height of the cross-correlation spectrum seems to be an important parameter that
could be used to characterize the distribution as a whole, i. e., outside the fundamental
parameters: λ, σ, µ, etc. Thus, it would be valuable to derive an analytical equation that
connects the fundamental parameters with the height of the resulting distribution. The
maximum of the cross-correlation distribution is located at ∆t = µ, and so the height
H0 is given by:

H0 = D(∆t = µ;ϕ, λ, εA, εB,µ,σ). (6.1)

Note that for PMTs with the same static time delay µ equals zero and the maximum is
located at ∆t = 0.

By substituting ∆t = µ in equation (5.2) it would be possible to derive the link
between H0 and the parameters of the distribution. Due to the complexity of the cross-
correlation distribution, however, this task is difficult, and it may not even be possible
analytically. Before falling back to numerical methods, it is, nevertheless, interesting to



78 estimation of the detection efficiency using time domain information

derive this connection in a more simplified case. By considering only the monoenergetic
case, ignoring the Gaussian response function of the detectors and substituting ∆t = µ
the resulting cross-correlation distribution can be written as:

Π(∆t = µ; n̄, λ, ε) =
1

C

∞∑
2

n−1∑
k=1

n̄n

n!
e−n̄

(
n

k

)
εk(1− ε)n−k

k(n− k)

n
λ, (6.2)

where ε = εA = 1− εB and C is a normalization coefficient. The binomial distribution
can be calculated first:
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= ε(1− ε)λm, substituting back n = m− 1

= ε(1− ε)λ(n− 1).

(6.3)

Substituting the result in equation (6.2) the Poisson distribution can be calculated also:
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(6.4)

The final result gives the relationship between the height of the cross-correlation distri-
bution and the underlying parameters n̄ and λ in this simplified case. Equation (6.4)
cannot be used in practice, because it is not normalized. The normalization is required
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because events with less than one detected photon per PMT would not be registered. It
is equal to the reciprocal of the sum of the probabilities for all detected events, or:

1

C
=

∞∑
n=2

n−1∑
k=1

(
n

k

)
εkεn−k = e−n̄ − e−n̄ε − e−n̄(1−ε) + 1. (6.5)

Finally, combining equations (6.5) and (6.4), the height of the cross-correlation distri-
bution H0 in the simplified case of a monoenergetic source and no gaussian jitter is:

H0 =
ε(1− ε)λ (n̄+ e−n̄ − 1))

e−n̄ − e−n̄ε − e−n̄(1−ε) + 1
(6.6)

To visualize the result, as well as to validate it, the Monte Carlo code was used to
simulate measurements corresponding to a zero gaussian jitter. The decay constant λ
was set to 0.3 ns−1 and the relative PMT efficiencies were set to be equal. The simulations
were performed for various mean number of detected photons and the height of the
cross-correlation distribution was obtained in each case. It is taken as the probability
in the bin corresponding to ∆t = 0. As the bin size for the histograms of Monte Carlo
data can be very narrow (10 ps in this case), this is an adequate approximation. The
results are shown in Figure 6.3. Equation (6.6) was calculated with the same ε and λ
parameters. There is an excellent agreement between the simulations and the analytical
equation.
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Figure 6.3: Height of Monte Carlo generated cross-correlation distributions without a Gaussian
jitter. The line is calculated analytically using equation (6.6).

Despite being and important first step, equation (6.6) is valid for a too simplified
case and may not be of practical interest. However, an analytical description of H0(n̄)
that includes the response function of the detector and the deposited energy spectrum,
would be very difficult to derive. Nevertheless, it is possible to calculate it numerically.
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Figure 6.4: Height of the normalized cross-
correlation spectra as a function of the
mean number of detected photons. The
data points are generated by the Monte
Carlo code and the lines are calculated
from the analytical equation with the same
parameters at ∆t = µ.

This can be done by calculating D(∆t = µ;ϕ, λ, ε,σ,µ) for a number of parameters ϕ
and then interpolating the data points. To illustrate the approach, the Monte Carlo
code was used to generate a number of measurements for 3H, 55Fe, 14C and 63Ni with
a wide range of FOM parameters. In all cases the λ and σ parameters were 4.0 s-1 and
0.6 ns respectively. The PMT efficiencies were set to be equal. The height of the resulting
cross-correlation distributions as a function of n̄ is shown in Figure 6.4. The lines were
calculated using the analytical equation (5.2) for the same parameters at a series of ϕ
and at ∆t = µ. The mean number of photons were calculated from ϕ using (2.18).

There are some interesting observations that can be made when analyzing equa-
tion (6.6) and Figure 6.3. Firstly, for a high enough number of detected photons, the
relationship between H0 and n̄ becomes linear, if the gaussian response function of the
detector is not considered. This could be of interest in routine LS measurements and
is explored further in Section 6.5. Another note is that the height H0 does not tend to
zero for zero mean number of detected photons. The explanation is that the number of
detected photons in a given coincidence event must be at least two – one photon per
PMT. Thus, even at very low average number of detected photons, the mean number
of photons in a coincidence event tends to two. In a more realistic scenario, however,
the relationship for high mean number of detected photons would not be linear due
to the gaussian response function of the detector (see Figure 6.4). For increasing n̄ the
height of the distribution will tend to some value that corresponds to the height of the
gaussian distribution. Thus, what is expected in real measurements is to have some
portion of H0(n̄) that is linear, and it would tend to some minimal value for low n̄ and
to some maximum value for high n̄. What can also be noted from Figure 6.4 is that for
3H and 55Fe the range of n̄ is such that falls in the region where the influence of the
response function of the detector is still insignificant and H0(n̄) is close to linear.
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6.3 experimental studies on the height of the cross-correlation dis-
tribution

In order to further investigate the relationship between the height of the cross-correlation
distribution and the mean number of detected photons, spectra of the EC nuclide 55Fe
and the pure β-emitters 3H, 63Ni and 14C were acquired on a TDCR detector. The sources
were prepared in UltimaGold LS cocktail using diffusive (sandblasted) glass vials. A
3H in Toluene+PPO cocktail LS source was also measured. These nuclides were chosen
to cover a wide range of mean number of detected photons and detection efficiencies.
55Fe could be considered close to monoenergetic with a mean deposited energy Emean

≈ 5.5 keV. 3H (Emean = 5.68 keV) is a low-energy β-emitter and the typical mean number
of detected photons is around two, which results in a detection efficiency of roughly
50% for the logical sum of double coincidences. 63Ni has 17.43 keV mean energy of the
β-spectrum, and a 75% detection efficiency is commonly observed when it is measured
on a TDCR counter. 14C (Emean = 49.16 keV) results in approximately 20 detected photons
per decay and its detection efficiency is usually above 90%

The cross-correlation distributions were acquired using the same detector used for the
Compton coincidences studies, but without an external γ-ray source. The digitized data
was analyzed using the list_mode_analysis software and the time distribution between
two of the three PMTs of the system was obtained. The LS sources were also measured
with a set of optical grey filters in order to obtain cross-correlation distributions of the
same sample with different detection efficiencies.

Figure 6.5 depicts the cross-correlation distributions of all samples without filters.
The experimental distributions are obtained by normalization of the measured cross-
correlation spectra on the total number of events in the spectrum. The results in the
figure confirm the aforementioned theoretical and experimental findings that higher
energy deposited in the cocktail leads to more peaked and less tailed cross-correlation
distribution. This phenomenon was also observed previously by other authors [102].

Figure 6.6 shows the height of the cross-correlation distribution of all measurements
of the nuclides, including those with grey filters. The mean number of detected photons
was obtained from the FOM obtained with the TDCR method and equation (2.18). The
height of the distribution is taken as the probability in the bin corresponding to ∆t = µ.
The bin size in the measurements is 1 ns, thus the obtained height corresponds to the
average of the distribution within the bin. This was accounted for later when height
was evaluated using the analytical equation.

The experimental results show that for a small mean number of detected photons n̄
the height of the cross-correlation distribution H0, depends almost linearly on n̄. For
large n̄ the response function of the detector leads to a non-linear behaviour. The actual
dependence can be found numerically by fixing ∆t = µ in equation (5.2) and varying
the parameters λ and σ. To account for the experimental bin size when calculating the
height using the analytical equation, the distribution was evaluated in 10 points within
±0.5 ns around µ and average was taken as the height H0. The quantum efficiencies



82 estimation of the detection efficiency using time domain information

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

−1000 −500 0 500 1000

Pr
ob

ab
ili

ty

tA − tB, ns

3H
55Fe
63Ni

14C

Figure 6.5: Cross-correlation spectra of 55Fe, 3H, 14C and 63Ni

of the PMTs are assumed to be identical and the µ parameter is calculated as the mean
of the cross-correlation distributions. The two other free parameters, the λ and σ were
varied until a satisfactory fit was achieved. The obtained parameters and fitted curves
are shown in Figure 6.6.

It should be noted there that the fit of λ and σ seems to guess some expectations about
those parameters. For example, the optimal decay constant for Toluene+PPO is 1.87 ns−1,
significantly lower than the ≈ 4 ns−1 decay constant obtained for UltimaGold. This is
expected as it is known that the Toluene cocktail is much faster and its decay constant
should be close to 2 ns−1. Another observation is that the optimal σ parameters are
different for 63Ni and 14C compared to 3H and 55Fe. To an extent, that is to be expected
as both 63Ni and 14C have higher mean energy of the β-spectrum and so produce more
light in the scintillator. This would lead to a steeper rising edge of the PMT signals and
a more precise timestamp from the digitizer.

These results show that, for a given radionuclide, knowing the decay constant of the
scintillator λ and the parameters of the detection system (ε, µ, σ), it is possible to obtain
the average number of detected photons n̄. Then it is straightforward to calculate the
detection efficiency of the measurement using equation (5.30). Thus, the activity of the
measured sample can be deduced from the height of the cross correlation distribution.
There is a certain advantage here over the TDCR method as only a two PMT system is
needed. A disadvantage, however, is the need to know the response function of the
detector σ and the decay constant of the scintillator λ to a good precision.
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Figure 6.6: Height of the normalized cross-correlation spectra as a function of the mean number
of detected photons. The data points measurements of 3H, 55Fe, 63Ni and 14C in UltimaGold
and 3H in Toluene+PPO cocktails. The fit is done with the analytical equation at ∆t = µ in
order to obtain the optimal λ and σ parameters.

6.4 cross-correlations and tdcr counting

The TDCR method allows to estimate the FOM from a LS counting measurement with a
three PMT system. The cross-correlation approach allows the determination of the same
parameter for a two PMT system. It is, therefore, interesting to compare the FOM values
obtained with the two methods.

The TDCR method is based on a model that provides a statistical description of the
physical phenomena occurring in the LS counting system. The principle and devel-
opment of the model is summarized in Section 2.2. With the TDCR method one can
obtain the detection efficiency of the detector from the ratio of the triple to double
coincidences. Under the assumption of three identical PMTs the ratio of the detection
efficiency in the T channel to that in the D channel is [27]:

ΦT

ΦD
=

∫Emax

0

S(E)
(
1− e−n̄(E;ϕ)/3

)3
dE∫Emax

0

S(E)

[
3
(
1− e−n̄(E;ϕ)/3

)2
− 2

(
1− e−n̄(E;ϕ)/3

)3]
dE

, (6.7)

where n̄ is the average number of photons detected for energy E deposited in the
cocktail, and is the same parameter defined in equation (2.18), that is used in the cross-
correlation method. Note that in this case the number of PMTs is equal to 3 and thus
the factor in the denominator in the argument of the exponent. For a large number
of detected events the ratio of the T to D coincidences tends towards the ratio of the
detection efficiencies or T/D = ΦT/ΦD. The free parameter ϕ can then be obtained by
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minimizing the squared difference between the two ratios. In the case of non-identical
PMTs a set of three equations must be used, including the relative efficiencies of the
three PMTs (see Section 2.2, equation (2.29)). The equations are used to optimize the
three free parameters of the system ϕA = εAϕ, ϕB = εBϕ and ϕC = εCϕ.

A direct way to extract the parameters of the measurement ϕ, λ, σ and µ within
the cross-correlation approach is to fit the experimental cross-correlation distribution
with the function D(∆t;ϕ, λ, εA, εB,µ,σ) given explicitly in equation (5.2). One setback
before the cross-correlation method can be applied however, is that the parameters ϕ
and λ are highly correlated. This was explored with fits of Monte Carlo generated data
in Appendix B. Thus, in order to obtain the correctϕ, it is necessary to fix the correct λ or
vice versa. Generally, the fast decay constant of the scintillator can be obtained by other
methods, for example by time-correlated single photon counting [110]. The parameters
concerning the measurement system can be estimated by careful characterization of the
time response of PMTs and their relative quantum efficiencies. This is how we envision
a state-of-the-art application of the cross-correlation method.

Another approach that could be used is to fix the ϕ parameter from a TDCR mea-
surement and thus obtain the decay constant of the given scintillator. Once obtained, it
could be used for other measurements with the same scintillation cocktail.

In order to compare the two methods the miniTDCR detector, operated in Sofia Univer-
sity, was used. The outputs of the detector were connected to a CAEN DT5751 digitizer.
The off-line analysis of the data allows the application of both the TDCR and cross-
correlation techniques using the same data. This is a significant advantage as the figure
of merit and PMT efficiencies obtained by the two methods can be compared directly and
in theory should be exactly the same. With this system, measurements of 3H and 14C
LS-samples in a Toluene+PPO scintillator were performed. Both samples were measured
without and with grey filters with transparencies from 90% to 60% The use of grey
filters allows the change of ϕ without changing the parameters associated with the
LS cocktail and nuclide. The FOM of the measurement without a filter was determined
from the analysis of the data according to the TDCR method. The value was then used
to determine the decay constant λ for this cocktail and the rest of the cross-correlation
spectra were fitted with a fixed λ.

An example can be given with the 3H measurements and the same technique was
applied for the 14C study. The cross-correlation spectrum of PMTs B and C was obtained
using the list_mode_analysis program. These two PMTs were selected due to their
almost identical quantum efficiencies and gain. Note here that the FOM for a pair
of PMTs, for example B and C, is ϕBC = ϕ(εB + εC), where ϕ is the FOM from the
TDCR measurement. The cross-correlation spectrum was taken within ±20 ns from the
centroid. This was done in order to reduce the influence of the delayed fluorescence as
it seems to dominate after approximately 10 ns. The list-mode files obtained during
the 3H measurement without filter were also analyzed with the list_mode_analysis

program according to the TDCR method. The coincidence window of the analysis code
was set to 20 ns to match the cross-correlation measurements. The relative quantum
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Figure 6.7: Cross-correlation spectra of a 3H sample with varying levels of grey filters. Top left:
without filter, top right: filter with 90% transparency, bottom left: filter with 80% transparency,
bottom right: filter with 70% transparency. The spectra are fitted with equation (5.2). The
normalized residuals are in units of standard deviations. The values in brackets are the un-
certainties as reported by the fitting algorithm. The parameters, for which the values are given
without uncertainties were fixed during the fitting.

efficiencies (εA, εB and εC) of the three PMTs were obtained as well as the FOM ϕ, using
a dedicated calculation code [93].

The experimental cross-correlation spectra were fitted using equation (5.2) by fixing
the value of the FOM to 0.685 ph.e−/keV, as obtained from the TDCR method, and
leaving all other parameters free. The fit was performed on data between −6 and
6 ns as the cross-correlation spectrum seems to be significantly affected by delayed
fluorescence for larger time differences. The data and fit for the 3H case are shown in
Figure (6.7) in the top left sub-figure. The quality of the fit is good as most residuals
lie within two standard deviations. Notice that a normalization parameter (Norm.) is
multiplying equation (5.2) in order to accommodate the fact that not all of the cross-
correlation spectrum can be explained by the prompt fluorescence only. From this
measurement the prompt fluorescence decay time λ of the scintillator was determined
to be 1/λ = 2.512(13) ns. This decay time was then used in all subsequent analysis of
measurements of the 3H sample.
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Figure 6.8: Cross-correlation spectra of a 14C LS-source in toluene+PPO cocktail. All experimen-
tal spectra are fitted with equation (5.2) with a fixed λ and normalization parameters.

The same technique was used for the measurements of 14C. For that cocktail the
decay constant is 1/λ = 3.373(67) ns. It was obtained from the fit of the cross-correlation
equation with a FOM taken from the TDCR method. The results for 14C are shown in
Figure 6.8.

Due to the much larger average number of photons in the case of 14C compared
to 3H, the cross-correlation distribution is significantly narrower – 67% of all events
in the distribution fall in the interval between ±1 ns and 91% fall within ±2 ns. For
3H the intervals are ±2.5 and ±5 for 67% and 91% respectively. The range that can be
successfully fitted by equation (5.2) was found to be ±2 ns. The events outside this
range seem to be significantly affected by the delayed fluorescence. The dispersion of
the residuals seems to be considerably larger than for the 3H measurements. This could
be due to the much narrower time distribution for which minor non-linearities in the
bin widths could play a role. Such effects are not included in the uncertainty of the
value in each bin which is estimated as the square root of the number of events in the
bin.

The comparison between the TDCR and cross-correlation estimated FOM values is
shown in Table 6.1. The FOM parameters obtained with the two measurement methods
agree well within the estimated uncertainties. The results indicate that, with a good
knowledge of the prompt fluorescence decay constant, the cross-correlation method
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3H: ϕ, ph.e−/keV 14C: ϕ, ph.e−/keV

Filter Cross-corr. TDCR Filter Cross-corr. TDCR

None — 0.685(20) None — 0.326(6)

90% 0.437(7) 0.434(13) 80% 0.254(6) 0.267(4)

80% 0.383(21) 0.370(11) 70% 0.229(9) 0.233(4)

70% 0.310(3) 0.312(9) 60% 0.201(8) 0.191(3)

Table 6.1: Comparison of the FOM obtained by cross-correlation and TDCR measurements with
various levels of grey filters for 3H and 14C LS sources.

provides reliable estimation of the FOM. It should be noted here, that the uncertainty as-
sociated with the cross-correlation method is only the uncertainty of the FOM parameter
as reported from the fitting algorithm. In order for the method to be used in practice, a
full uncertainty budget will be required. This will be explored in the future.

The TDCR method relies on the accurate description of the relative light output of the
scintillator with respect to the deposited energy. This is commonly done with Birks’
ionization quenching formula (see equation 1.12). As the method uses the triple and
double coincidence counting rates to calculate the efficiency it is necessary to select
coincidence windows that are wide enough to include all correlated events, otherwise
a bias may be introduced in the measurement. For too short coincidence windows the
loss of triple coincidences will be higher than the loss of double coincidences and a
biased efficiency will be obtained. Increased coincidence resolving time would increase
the contribution of delayed fluorescence to the overall scintillation light, thus the simple
ionization quenching formula proposed by Birks to describe the ionization quenching of
prompt fluorescence cannot be used. These issues of the TDCR method will be discussed
in length in Chapter 9, but it can be summarized that the choice of coincidence resolving
time for TDCR measurements is still an open problem. The cross-correlation method
could be helpful in that regard as it allows considering only the events due to the
prompt fluorescence. That way the ionization quenching formula proposed by Birks
should describe the light output of the scintillator accurately. This could possibly lead
to an improvement in the detection efficiency calculation for low-energy nuclides where
the proper knowledge of the light output as a function of the deposited energy is critical.
Further studes will be conducted in order to focus on this aspect of the cross-correlation
method.
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6.5 cross-correlations and conventional liquid scintillation analy-
sis

The methods presented in the previous two sections demonstrate the potential for
primary activity measurements without the need to do calibration measurements. This
would be possible if the parameters of the detection system and LS cocktail are known
beforehand. These methods, however, require complex calculations which may not
be practical for all applications. The methods also depend on measurement of the
cross-correlation distribution with very high resolution in the order of a few hundred
picoseconds. Therefore, it is worth searching for a correlation between a parameter
of the cross-correlation distribution and a parameter that can be used to calculate the
detection efficiency. The connection between two such parameters that was already
explored is between the height of the cross-correlation distribution and the figure of
merit.

6.5.1 The height of the cross-correlation distribution as a function of the FOM

In order to study more simplified ways in which the height of the cross-correlation
distribution can be used as a proxy for the detection efficiency, the same measurement
data as in Section 6.3 was used. The data consists of measurements of 3H, 55Fe, 63Ni
and 14C in UltimaGold LS cocktail. The time distributions are obtained with 1 ns bin
size. For a bin size of such width, it should not be considered that the value of the
probability at the bin corresponding to ∆t = µ gives the height, or at least not to a
good precision. This is especially true for 63Ni and 14C, where the cross-correlation
distributions are very narrow and the first derivative is large in the region of the peak.

In order to improve the accuracy, the height of the distribution H0 is determined
by fitting the cross-correlation data in the range [−3 ns, 3 ns] with a Voigt profile.
The height is then taken as the value of the fitted function at ∆t = µ. By testing
various functions it was determined that the Voigt profile describes well experimental
distributions in a narrow range around the peak. Moreover, this function is convenient
as it can be easily found in many commonly used curve fitting programs.

Figure 6.9 (top left) shows the cross-correlation distributions in the case of the 3H
sample measured as is and with various grey filters. The distributions were fitted with
the Voigt profile and the height was taken as the value of the fit at ∆t = µ. The FOM

of these measurements was also obtained, using the TDCR method. The relationship
between the height and the FOM is shown in Figure 6.9 (top right). There is an excellent
linear relation between H0 and the FOM. Similar results were obtained in the case of
55Fe, which are shown in the same figure (bottom left and bottom right). It should
be noted that the linearity is conserved over a very wide range of FOM values, which
covers most of what can be obtained in practice, i. e., both large and small detection
efficiencies.
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Figure 6.9: Cross-correlation studies with 3H and 55Fe in UltimaGold cocktail and various
levels of grey filters. The cross-correlation spectra (left) are fitted within ±3 ns with a Voigt
profile in order to evaluate the height of the distribution.

This linear relationship could be very useful in practice. For example, a method could
be devised in which a calibration source in a given LS cocktail and vial is used. The
H0(ϕ) relationship can be obtained for this source with cross-correlation measurements
with a set of filters. This function can then be used to construct the inverse ϕ(H0),
which can later be used to find the FOM in a given measurement if the height of the
cross-correlation distribution is known.

This linear dependence is not seen for the 63Ni and 14C samples, where the influence
of the response function of the detection system can be felt more clearly. The non-
linearity of H0(ϕ) can be seen in Figure 6.10 and also from the studies in the previous
section. The same non-linearity can be observed in the H0(n̄) relationship also. However,
these dependencies are still close to linear, thus it could be beneficial to try to scale the
height with another parameter that depends on the width of the distribution, which in
turn is closely related to the detector’s response. One such parameter that was found
to be useful is the FWHM.

The same cross-correlation spectra of all sources with and without grey filters were
taken and the H0/FWHM was calculated. The FWHM was evaluated after the experi-
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Figure 6.10: Cross-correlation studies with 63Ni and 14C in UltimaGold cocktail and various
levels of grey filters. The cross-correlation spectra are fitted within ±3 ns with a Voigt profile in
order to evaluate the height of the distribution.

mental spectrum was interpolated using a cubic spline. The results from the experiment
are shown in Figure 6.11. The results show good linear relationship between the scaled
height of the distribution and the mean number of detected photons n̄ parameter. The
figure can be compared with the H0(ϕ) shown in Figure 6.6.
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6.5.2 Relationship between the height and the TDCR parameter

A commonly used approach in routine liquid scintillation analysis is to determine the
detection efficiency from a quenching indicator using predetermined quench curves.
There are many quenching indicators depending on the manufacturer of the LS analyzer,
but they all rely on the analysis of the pulse-height spectrum of the sample acquired with
an external γ source. A recent study [111] has shown that the TDCR value can also be
used as a quench indicating parameter. Here we present results of TDCR measurements
of 3H and 55Fe in UltimaGold cocktail with efficiency variation performed by means
of grey filters. The results indicate that there is a linear relation between the height of
the cross-correlation distribution H0 (equation (6.1)) and the measured TDCR value in a
very large interval (Figure 6.12).
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Figure 6.12: Height of the cross-correlation distribution (H0) as a function of the TDCR value for
3H (left) and 55Fe (right) sources in UltimaGold cocktail.

6.5.3 Kurtosis of the cross-correlation distribution

Similar to the height, the tails of the distribution also depend on the FOM. It is thus also
interesting to consider the relationship between the shape and contribution of the tails
to the whole distribution. In order to characterize them it is possible to use the fourth
moment of the cross-correlation distribution, the kurtosis K:

K = E

[(
∆t−∆t

σD

)4]
(6.8)

where ∆t and σD are the mean and the standard deviation of the cross-correlation
distribution and E stands for the expected value. The reasoning behind using the fourth
moment of the distribution is that it is very sensitive to the tails.

Good linear relations are observed between the kurtosis and the mean number of
detected photons (Figure 6.13). Note that, the experimental points for K(n̄) seem to
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belong to the same line for all β-emitting nuclides in UltimaGold cocktail except for
55Fe.
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Figure 6.13: Kurtosis of the cross-correlation spectra – the data points are measurement results
and the linear fit is performed on the 14C data and extrapolated.
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S
ummary The main focus of the second part of the thesis falls on the studies of
the distribution of light detection events. The list_mode_analysis software
for the off-line processing of CAEN digitizer data was presented in Chapter 3.

The main contribution of the code is the definition of the time interval distributions not
only for two channels in coincidence, but also for the logical sum of double coincidences
and for the triple coincidences. Another main feature of the program is that all signals
that are considered are subject to the same coincidence window and dead-time logical
rules. This includes the case when the time distribution histograms are constructed.
The dead-time logic that was chosen for the list_mode_analysis code is the common
dead-time logic. Its performance was compared to the recently proposed individual
dead-times counting algorithm. The comparison was presented in Chapter 4. The
IDT logic seems to lead to a reduced dead-time of the system when measurements of
high activity 3H sources are performed. It also shows very similar performance as the
CDT in 63Ni, 14C and 90Sr/90Y measurements for activities in the range of 2 to 3 kBq.
While having some benefits, the improvements in performance of the IDT logic seem
to be at the expense of misclassification, in rare cases, of T events as D events. This
was especially evident in 222Rn measurements, where the 222Rn activity obtained with
IDT counting rates is 0.4% higher than with CDT counting rates. The results of the
comparison were published in the journal Applied Radiation and Isotopes [103].

The comparison of the counting algorithms was performed also on artificially gen-
erated time sequences of events using a Monte Carlo code, which samples the timing
of detected scintillations from a pre-measured time interval distribution. This code
also served as an inspiration to develop another Monte Carlo simulation program that
uses physical assumptions about the time dependence of the scintillation light of the
prompt and delayed fluorescence and of the time response function of a LS detector.
The latter code, described in Appendix A, outputs digitizer-like list-mode data that can
be analyzed by the list_mode_analysis program. The time distributions that were
obtained from Monte Carlo simulation data were compared to real measurements and
an excellent agreement was obtained.

The exploration of the time interval distributions were continued further in chapters 5

and 6. Firstly, an analytical model of the cross-correlation distribution of prompt
fluorescence was developed. The various steps in the derivation were validated through
comparisons with the Monte Carlo code. The final equation gives identical results as
the Monte Carlo simulation in the case of a nuclide with a given energy spectrum, a LS

cocktail with a given prompt decay constant and a detector system with given relative
PMT efficiencies, static delays and standard deviations of the Gaussian time jitter.

93
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As the analytical equation depends on the FOM of the measurement, it was postulated
that it could be used to fit experimental data and be used to obtain the detection
efficiency of a two PMT system. However, the complexity of the theoretical equation
required a fast computer code for its calculation. Such code was developed in the
framework of this thesis, and it is presented in Appendix B. The code was optimized to
be as fast as possible, and it can be used to fit measurement data with the analytical
equation in order to extract the underlying parameters.

The main result in this part is the study of the applications of the cross-correlation
distribution. It was shown that the height of the distribution could be used to calcu-
late the mean number of detected photons, if the parameters of the scintillator and
detection system are known. Attempts were made to fit the analytical cross-correlation
distribution directly to experimental data. Very good results were observed for 3H and
satisfactory results were observed for 14C. These studies demonstrate that if the decay
constant of the prompt component of the scintillator is known, it is possible to estimate
the FOM of the measurement, and from it the detection efficiency. These results are an
important first step towards the use of the cross-correlation distribution for primary
activity measurements.

The use of cross-correlation data in routine LS analysis was also explored. It was
shown that the height of the experimental distribution depends linearly on the FOM

for the low-energy emitters 3H and 55Fe. This would allow to record the height as a
function of the FOM for a calibration source and then use this information in subsequent
measurements of unknown sources. The relationship between the height scaled to
the FWHM and the mean number of detected photons was shown to be linear for all
studied nuclides. The possibility to characterize the distribution using its kurtosis was
also explored by plotting it with respect to the mean number of detected photons. The
results show that, under certain conditions, the same linear relationship is observed for
3H, 63Ni and 14C when in the same LS cocktail.

challenges There are several challenges in front of the successful application
of the cross-correlation method for primary activity standardization by LS counting.
Perhaps the largest obstacle is in the form of the delayed scintillation component. Thus
far there does not seem to be a reliable model of its timing properties and attempts to
describe it include many unknown parameters. Moreover, it is diffusion controlled and
its emission rate depends on the temperature of the scintillator. As will be shown in
Chapter 9, the delayed fluorescence is also problematic for the TDCR method. In this
regard, it would be beneficial to develop LS cocktails with less pronounced delayed
component.

Another challenge would be that the rise time of the prompt scintillation component
is not included in the analytical model (equation 5.2). For some cocktail it is possible
that this rise time is a significant fraction of the decay time and would influence the
overall shape of the cross-correlation distribution. The inclusion of another exponent to
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describe the scintillation rise time can be done, but it would not permit the analytical
evaluation of the cross-correlation between the responses of the two PMTs.

From experimental point of view, high-quality PMTs have to be used for cross-
correlation measurements, i. e., high quantum efficiency and single photon sensitivity.
In addition, matched PMTs with similar efficiencies and timing response would be
preferable. The analysis of the time of arrival of PMT signals requires fast digitizers
with constant fraction discrimination or fast circuits with timing resolution better than
200 ps. The time-response properties of the system, described by λ, µ and σ in the
cross-correlation distribution D(∆t;ϕ, λ, εA, εB,µ,σ), have to be carefully characterized.
The parameters µ and σ are specific to the detector system and depend on the PMTs

and the associated electronics. The decay constant λ is a property of the LS sample.
Unfortunately, the decay constant λ and the figure of merit ϕ cannot be determined
from a single fit of the cross-correlation distribution because they are strongly correlated.
The solution is to use additional measurements, as it is done in this work, or to use
other techniques, such as time-correlated single photon counting, to determine the
decay constant λ. The latter option is very promising as it allows completely indepen-
dent determination of λ for a particular LS sample and thus will largely facilitate the
determination of the FOM. This approach will be explored in future studies.

From a theoretical point of view, a challenge in front of the cross-correlation method
as a method for primary activity measurement is that it determines the mean number
of detected photons or the FOM. In order to go from detected photons to detection
efficiency one is obliged to go through the free parameter model. Thus, the cross-
correlation method inherits all the deficiencies of the free parameter model, such as the
unknowns in the light output as a function of the deposited energy. The same problems,
however, apply to all other currently used methods in radionuclide metrology using LS

counting, e. g., TDCR and CNET. In this regard, it is possible that the cross-correlation
method gives new information that could be used to reduce the uncertainties associated
with the free parameter model.

Finally, a full uncertainty budget of the detection efficiency derived from the cross-
correlation method should be established for the application of this method in radionu-
clide metrology. Currently, only the fit uncertainty was considered, but in order to be
precise, many other contributions would have to be considered, such as: the effect of
the digitizer’s finite sampling rate, the walk of the constant fraction discriminator, the
influence of temperature on the decay constants, the influence of delayed fluorescence,
uncertainty in the β-spectrum, uncertainties associated with the non-linearity of the
light output of the scintillator with respect to the deposited energy and possibly others.

The challenges in front of the application of cross-correlation data to more routine LS

measurements seem to be quite fewer. The preliminary results described in this part
seem to suggest that the height of the cross-correlation distribution could be used as a
proxy for the detection efficiency if the detection system is calibrated beforehand.
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M E A S U R E M E N T O F T H E H A L F - L I F E O F S O M E E X C I T E D
N U C L E A R S TAT E S B Y L S C O U N T I N G

L
iquid scintillation counting has some specific features compared to other
detection methods, namely the 4π detection geometry and the practically
100% detection efficiency for energies over 40 keV [23]. Due to these factors

the method is well suited for measurements of the half-life of radioisotopes. In recent
years it was successfully used for the accurate determination of a multitude of half-lives,
e. g., the very long-lived 147Sm (1.08× 1011 years) [112], 176Lu (3.8× 1010 y) [113] and
10Be (1.4× 106 y) [114] or the short-lived 212Pb (10.64 h) [115] and 214Po (3.7 µs) [116].
The measurement technique allows the determination of half-lives which range from
several microseconds to 1011 years.

These properties of LS detectors could be also useful for the study of excited nuclear
states, especially in short-lived nuclides, where lower detection efficiency would require
long measurement times which may not be achievable. Moreover, due to the fast
response of organic scintillators (typically a few ns, depending on the scintillator) and
PMTs (typically 1.3 ns rise time), the timing of scintillation events could be very precise.
Thus, it is a useful method for fast timing measurements in the nanosecond range.

In this chapter the LS method is shown to be a useful tool for the study of the half-life
of some nuclear isomeric states. Two measurement techniques are proposed: one which
utilizes a 3-PMT LS counter equipped with additional gamma detector and a CAEN

digitizer and another with a 2-PMT LS detector – without the use of a γ channel. We
analyze the time interval distributions between the events in the different channels of
the system and demonstrate that these could be used for accurate determination of the
half-lives of some excited states in certain nuclides.

7.1 measurement systems

Two experimental systems were used in this study. The first experimental system is
the TDCR portable device developed at LNHB for primary measurement of activity of
LS–samples. The same device was used in chapters 8, 9 and 10. It consists of a three
PMT LS detector and a 5 mm x 5 mm x 1 mm CdTe X-ray detector. The PMTs in the LS

system are square, small form-factor Hamamatsu R7600-200 tubes with 350 ps FWHM

transient time spread [91]. The solid state detector is an AmpTek XR-100CdTe with a
PX2T power supply and shaping amplifier [117].
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The three PMTs are positioned in a 120
◦ geometry around a standard 20 ml liquid

scintillation vial. The vial is placed in a 3D printed optical chamber made with PLA1

plastic. The chamber is covered with reflective polymer foil with 98.5% reflectivity
across the visible spectrum (Enhanced specular reflector foil by 3M). The CdTe detector
is placed as close as possible to the vial, in order to achieve maximum geometrical
efficiency and between two of the three PMTs (as shown schematically in Figure 7.1).

Figure 7.1: Simplified schematic of the three-
PMT LS detector and the CdTe γ-detector.

The three PMT channels and the amplified and shaped output of the CdTe detector are
connected to a CAEN DT5751 desktop digitizer [109] with 1 GS/s sampling rate. The
signals of the three PMTs and the CdTe detector are digitized. A timestamp of the arrival
times as well as the peak area are recorded for each event in a file for off-line analysis.

The second experimental system is an in-house developed LS detector with two
XP2020Q PMTs looking from opposite sides at a standard 20 ml LS sample. The vial
is placed in a 3D printed optical chamber which is optimized for fast light collection.
Both PMTs are directly connected to the DT5751 digitizer and the incoming events
are recorded in a list mode file. This system was used for the LS–LS coincidences
measurements and to obtain the half-lives of the excited states without the use of the
gamma channel.

The two detector systems were used to measure LS–sources of 57Co and 241Am in
UltimaGold cocktails in standard 20 ml glass vials covered with diffusive tape. The
latter is done in order to reduce the total internal reflection and trapping of light inside
the sample. Both sources contain approximately 100 µl water.

Due to the higher delay of the CdTe detector, the PMT channels in the 3-PMT detector
are delayed by 4 µs using the software. This value was determined by measuring the
241Am LS–source and changing the delay until a maximum coincidence counting rate is
reached between the LS and γ channels with a 40 ns coincidence window.

1 Polylactic acid – a common material used in 3D printig.
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7.2 decay curve analysis

When analyzing the time interval distributions, depending on the measurement condi-
tions, it is possible that the observed decay constant differs from the true decay constant
of the excited state. Such a problem could arise when there is a large probability for
uncorrelated events to serve as stop signals. This was first described by Radeloff et
al. and they have proposed that a bi-exponential equation is needed in such cases to
accurately describe the observed decay curve. The equation is the following [118]:

Ntotal(t)dt = Ae
−(N2+λ)tdt+Be−N2tdt, (7.1)

where Ntotal(t)dt is the number of detected events per unit time, λ is the decay con-
stant of the excited state and N2 is the counting rate in the channel of the transition
depopulating the excited state. The second term in the sum accounts for contribution
of the accidental coincidences and background signals to the observed time interval
distribution. The first term is an exponential decay with a modified decay constant in
order to account for uncorrelated events that serve as a stop signal. This behaviour was
found to be significant for measurements of half-lives in the order of a second.

The highest single counting rate and the largest half-life studied in this work are for
the 14.4 keV level of 57Fe, so if the effect is significant it will be most pronounced in
this measurement. The counting rate in the stop channel is N2 = 1.3× 103 s−1 and the
decay constant of the excited state is λ = 7.094× 106 s−1. The difference between the
apparent decay constant and the true one is 0.02%. As this is negligible compared to
the other uncertainty factors a single exponent with λ as an argument was used to fit
all obtained time distributions.
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Figure 7.2: Time interval distribution of a 57Co source without and with correction for accidental
coincidences. The points between 3 µs and 5 µs were considered for the linear fits.

However, the accurate determination of the half-life necessitates that the plateau that
is formed by the accidental coincidences is taken into account. In equation (7.1) this is
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done via the second term in the sum. In this study all time interval distributions are
corrected for accidental coincidences according to the experimental method described
in Chapter 8. The distribution is obtained for a large enough window that includes
all correlated coincidences as well as a part of the distribution which contains only
accidental coincidences. The distribution of the accidental coincidences is approximated
with a linear function and the accidental coincidences are subtracted from the observed
time interval distribution to produce the distribution of the true coincidences. The
approximation with a linear function is valid in the studied cases as the counting rate
is low enough. The procedure is illustrated in Figure 7.2. The time interval distribution
of a 57Fe LS-source with start and stop signals from an LS detector is shown before and
after subtraction of the contribution of the accidental coincidences.

The obtained time interval distributions are fitted with the non-linear least squares
Levenberg-Marquardt algorithm using gnuplot [119]. The number of events per bin is
in all cases more than 30, and so we can assume that the statistical fluctuations have a
Gaussian distribution. The standard deviation of the number of detected events in each
bin is calculated as the square root of the number of events in the bin, thus assuming
Poisson statistics. The uncertainty of each data point is taken into account in the fitting
algorithm.

7.3 half-life measurements of excited states in fe-57

57Co decays via EC to the 136.5 keV excited level of 57Fe with 99.8% probability (shown
in Figure 7.3). The decay is detected in the liquid scintillator by the X-ray and Auger
electron emissions. The time for the rearrangement of electrons after the EC is in the
order of 10−16 s and thus this process is considered to be instant compared to the
studied half-lives [120]. The energy released in the scintillator after the EC is in the
range from 5.4 to 7.1 keV. The detection efficiency for a double coincidence in the LS

detector for such energies is around 50%.
The second excited level of 57Fe transitions to the ground level with 10.65% probability

or to the first excited level with 85.5% probability with a half-life of around 8.6 ns (see
Figure 7.3). The 2 – 0 transition can be detected in the scintillator by the 129.4 – 136.5
keV conversion electrons, produced with about 4% intensity, or it can be detected by
the gamma emission due to the transition γ2,0(Fe) = 136.5 keV which directly interacts
with the scintillator by Compton scattering or photoelectric effect. Similarly to the
previous transition, the 2 – 1 transition can be detected by the 115 – 122 keV conversion
electrons, produced with about 4% intensity, or by the gamma emission due to the
transition γ2,1(Fe) = 122 keV. Finally, the first excited level has a 98 ns half-life and
the 1 – 0 transition can be detected from the 7.3 – 14.4 keV conversion electrons or
gamma emission due to the transition γ1,0(Fe) = 14.4 keV. With the analysis of this
decay scheme and the properties of this specific LS–gamma detector, there are a few
possible start – stop combinations from the available events:
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Figure 7.3: A simplified decay scheme of 57Co. Only transitions with intensities above 0.2% are
shown. The START and STOP signals that were used to study the half-lives of the two excited
states are also shown. Data and figure taken from [121].

1. EC is detected (START) and γ2,0(Fe) is detected (STOP). Such coincidences were
used to study the half-life of the 2

nd excited state.

2. EC is detected (START) and γ2,1(Fe) is detected (STOP). In this case γ1,0(Fe) would
be within the dead time of the detector. These coincidences were also used to
study the half-life of the 2

nd excited state.

3. EC is not detected; γ2,1(Fe) is detected (START) and γ1,0(Fe) is detected (STOP). This
was used to study the half-life of the 1

st excited state.

4. EC is detected (START), γ2,1(Fe) is not detected (low probability) and γ1,0(Fe) is
detected (STOP). Such coincidences were also used to study the half-life of the 1

st

excited state.

The various start and stop possibilities are shown in Figure 7.3.
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Figure 7.4: Spectrum of the 57Co
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energy part of the spectrum. For
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the low energy events are used as
START and the high energy events
are used as STOP.
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7.3.1 14.4 keV level of Fe-57 using LS–LS coincidences

A 60-hour-long measurement of a 5 kBq 57Co LS–source was performed using the
3 PMT TDCR-γ detection system. This system was preferred over the 2-PMT system
in order to directly compare results with LS–γ coincidences on the same list-mode
data. The obtained list-mode files were analyzed using the dedicated software; two
of the PMT channels were constrained to include only events with medium energy -
i.e. removing single photon events and the high-energy 122 – 136 keV interactions.
Removal of the single photon events is done in order to remove spurious events and
delayed fluorescence coming from the cocktail. The energy spectrum and the part of
the events which were considered for this study are shown in Figure 7.4. Even after
selecting only a part of the energy spectrum that excludes the high energy events all
coming from the 2

nd excited state of 57Fe there is a non-zero probability to detect events
from this state because of Compton scattered electrons from the γ2,0(Fe) and γ2,1(Fe)
transitions. Such events will distort the decay curve of the 1

st excited state as they can
serve as both start and stop signals. However, after ten half-lives of the 8.6 ns level, or
about 90 ns, only events from the 14.4 keV level can be detected as a stop signal due to
its significantly longer life-time compared to the other transitions.
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Figure 7.5: LS–LS coincidences
measurements of the 14.4 keV
level of 57Fe. The start signal is
given by a low energy event in
one PMT and a low energy event
in the other PMT. The time inter-
val distribution is obtained with
the TDCR detector. The normal-
ized residuals are in units of num-
ber of standard deviations.

Another effect that has to be considered is that the Compton scattered electrons
produced from the γ2,1(Fe) transition interacting with the cocktail can act as a start
signal. Due to the 8.6 ns half-life of the 2

nd excited state they cannot be considered to be
instantaneous after the decay. This leads to a sum of two exponential distributions: first
a rise time equal to the decay time of the 2

nd excited state and second an exponential
decay with the decay constant of the 1

st excited state. After a sufficient time the effect
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of the rise time is negligible and only the decay time of the 2
nd excited state will be

observed.
The time interval distribution between the first events in the two PMTs within the

selected energy range is shown in Figure 7.5. The total number of coincidence events in
the presented measurement is 108. The time distribution was fitted with an exponential
decay and the points considered in the fit are between 300 and 1100 ns. The obtained
half-life is 97.93(9) ns, where the uncertainty is the statistical uncertainty reported
by the fitting algorithm. The residuals are well grouped within ±2σ. Some residuals
outside the fit boundaries are also shown in order to illustrate that the quality of the fit
is preserved also at wider range.

7.3.2 14.4 keV level of Fe-57 using LS–γ coincidences

The same list-mode 57Co measurement was used in order to study the LS–γ coincidences.
In this case the start signal is given by an event in the 136.47 keV peak in the CdTe

detector and the stop by a low-energy event in the LS (excluding the single photon
peak). The time interval distribution is displayed in Figure 7.6. The fit is performed
between 250 ns and 450 ns with an exponential function. The obtained half-life is
97.8(28) ns, where the uncertainty is only the statistical uncertainty reported by the
fitting algorithm. Due to the low geometrical efficiency of the γ-channel detector, it is
difficult to obtain the same precision for the same measurement time as with the LS–LS

coincidences method.
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7.3.3 136.5 keV level of Fe-57 using LS–LS coincidences

The half-life of the 136.5 keV excited state was determined from LS–LS coincidences
using the 2-PMT detector by triggering on medium-energy events in one PMT as a start
signal and using the 122-136 keV peaks for a stop signal in another PMT. The spectrum
of the events considered for start and stop is shown if Figure 7.4. The study of the 2

nd

excited state is significantly easier compared to the 1
st as there is only one start event

and the two stop transitions 2 – 1 and 2 – 0 can be separated well from the rest. The
half-life of this level is too short to be studied with the CdTe gamma detector due to its
timing resolution.
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Figure 7.7: LS–LS coincidences
measurements of the 136.5 keV
level of 57Fe. The start signal is
given by a low energy event in
one PMT and a 122-136 keV event
in the other PMT. The time inter-
val distribution is obtained with
the 2-PMT system. The normal-
ized residuals are in units of num-
ber of standard deviations.

The observed decay curve in such a configuration is shown in Figure 7.7. The fast
response of the PMTs in LS–LS technique allows us to study 9.7 half-lives of this state.
The half-life obtained from an exponential fit is 8.78(2) ns, where the uncertainty is the
statistical uncertainty reported by the fitting algorithm.

7.4 half-life of the long lived neptunium-237 excited state

241Am decays with the emission of an α-particle to the 59.54 keV short-lived isomeric
state of 237Np with 84.45% probability (see Figure 7.8). A 1 kBq source of 241Am in
UltimaGold (UG) liquid scintillator in a standard 20 ml glass vial was prepared for the
purpose of this study. The source was measured for 60 hours with the described mea-
surement system and the events from all LS channels and the γ detector were recorded
in list-mode files. The files were analyzed to obtain the time interval distributions for
the LS–LS and LS–γ coincidences.
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Figure 7.8: Simplified decay scheme of
241Am. Only γ emissions with intensities
above 3% are shown. Data and figure taken
from [121].

For the usual applications of the LS detectors the PMTs are working in single photon
mode with gain in the order of 107. At such high gain the light from the alpha particles
of 241Am would produce large signals with significant afterpulses spanning several
microseconds. Thus, single photon mode would be unsuitable to detect the signal from
the 59.54 keV de-excitation as the detectors will be saturated. This saturation can be
avoided by reducing the PMT high-voltage, from 2100 V to 1700 V for the used XP2020Q
PMTs, thereby reducing the gain to approximately 105. This is sufficient to reduce the
afterpulses to a negligible level and gives the opportunity to use the 241Am α-particle
in the LS as a start signal and a 59.54 keV conversion electron or γ, again in the LS, as
a stop. The obtained decay curve with such a configuration is shown in Figure 7.10.
A major advantage of the LS–LS coincidences with the 2-PMT detector over using a
γ detector is the 100% efficiency for α-particles and close to 100% efficiency for the
59.54 keV emissions.
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Figure 7.9: Spectrum of the 241Am LS–sample obtained with the 2-PMT system. The 241Am α

peak is shown in green and the events from the 59.5 keV transition of 237Np in red.
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Figure 7.10: LS–LS coincidences
measurement of the 59.5 keV level
of 237Np. The start signal is given
by events in the alpha peak of the
LS spectrum and the stop signal is
given by a low energy event from
the 59.5 keV transition. The time
interval distribution is obtained
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The result from the LS–LS coincidences was compared with the half-life obtained with
LS–γ coincidences using the 3-PMT TDCR-γ detector. In this case the start signal is given
by an α event in the LS and the stop event is given by an event in the 59.54 keV peak in
the CdTe detector.

The alpha particle coming from the decay 241Am is detected in the scintillator with
100% efficiency. The 59.54 keV gamma can then be detected in the CdTe detector with a
geometrical efficiency of about 0.35%. The performed measurement is 136 hour long
and the total number of recorded coincidences is 4× 105. The distribution of the time
interval between a PMT event and the CdTe detector event in the 59.54 keV peak is
displayed in Figure 7.11. The number of events per bin are normalized by the total
number of detected events. The bottom graph shows the residuals of the fit within the
fitting range of 175 ns to 700 ns in green and outside the fitting range in red. The points
before 175 ns are excluded in order to remove effects of the gaussian timing response of
the CdTe and events after 700 ns are excluded due to too low statistics. The reduced χ2

statistic of the fit is 1.037. The observed half-life is 67.60(22) ns, where the uncertainty
is the statistical uncertainty reported by the fitting algorithm.

7.5 analysis of the results and uncertainty evaluation

An overview of the uncertainty budgets is presented in Table 7.1. The factors that
could influence the half-life assessment considered in this work are: the uncertainty
associated with the fitting algorithm, the corrections for accidental coincidences, the
choice of boundaries for the fitting and possible contribution from other excited states
in the case of LS–LS coincidences. The fits of the decay curves were performed with
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Figure 7.11: LS–γ coincidences
measurement of the 59.5 keV level
of 237Np. The start signal is given
by the alpha particle in the LS and
the stop is given by an event in
the 59.5 keV peak in the CdTe. The
normalized residuals are in units
of number of standard deviations.

non-linear least squares Levenberg-Marquardt algorithm. The fit uncertainties are taken
from the output of the fitting algorithm. The uncertainty associated with the correction
for accidental coincidences was estimated by a manual change of their amplitude until
a visible change in the residuals was observed; similar to the technique described
in [122]. The uncertainty coming from the choice of fitting boundaries was evaluated
by choosing different low and high limits and studying the effect on the final value for
the half-life. For the LS–LS coincidences there is some uncertainty due to the choice of
the parts of the PMT spectrum that are taken for start and stop signals. The estimate of
this uncertainty was performed by analyzing the decay curves obtained with different
parts of the spectra for the start and stop energy windows.

Due to the poor energy resolution of the LS detector it is important to consider that
the studied excited states could be populated by higher-lying states. Their half-life is in
some cases unknown and should not be readily assumed to be instant compared to
the half-life of the studied state. In the case of the 136.5 keV level of 57Fe there are two
higher energy excited states from which it could be populated. The 3 – 2 and the 4 – 2
transition have 0.0004% and 0.015% probability respectively and would give negligible
contribution to the decay curve observed in Figure 7.7. For the 14.4 keV level of 57Fe
the 3 – 1 transition has 0.0032% probability and according to the literature the half-life
of the 3

rd excited state is less than 4 ns. Therefore, this transition will have a negligible
influence on the decay curve observed in Figure 7.5. The 4 – 1 transition, however,
occurs with 0.159% probability and is 692.4 keV. The half-life of the 4

th excited state is,
however, unknown. The maximum deviation in the obtained decay time due to this
transition would be less than 0.05% if we assume that the 4

th excited state has close to
50 ns half life. No such considerations are needed in the case of the 237Np decay curve
from LS–γ coincidences as the start and stop levels are well-defined.
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Due to the finite sampling rate of the digitizer there is a time jitter which could be
worth considering when dealing with short half-lives, such as that of the 136.5 keV
excited state of 57Fe. Considering that inside a 1 ns time interval, the pulse could happen
anywhere with the same probability. So, taking into account a uniform distribution
for the start signal, and the same for the stop signal, the total time distribution would
be a triangular distribution (convolution of two square distributions) with a standard
deviation of 1/

√
6 ns, thus about 0.4 ns. For a sample of N start/stop couples, there is

an averaging, so this standard deviation is divided by
√
N. For the LS–LS measurements

of the 136.5 keV level of 57Fe this effect should be the most pronounced. The timing
uncertainty in the bins with the least amount of detected events is 0.03 ns or 3%. This
uncertainty is considered negligible, compared to the statistical uncertainty due to the
number of detected events in those bins (around 18%), which is already included in the
uncertainty of the fit.

The final values obtained for the half-lives of the two 57Fe states and the 237Np
state, after taking into account the factors contributing to the uncertainty, are shown
in Table 7.1. Due to the low counting statistics the 237Np LS–LS and the 57Fe LS–γ
measurements were not considered for the final result report.

Table 7.1: Measured half-life values and uncertainty budgets. The uncertainty values are the
standard uncertainties.

136.5 keV 57Fe 14.4 keV 57Fe 59.5 keV 237Np

Uncertainty from fit 0.22% 0.13% 0.33%

Corrections for accidental coincidences 0.25% 0.15% 0.15%

Fitting boundaries 0.22% 0.24% 0.10%

Contribution from higher excited states 60.01% 0.05% —

Choice of gates in the spectrum 0.10% 0.25% 60.01%

Total 0.41% 0.40% 0.37%

Final result 8.780(36) ns 97.90(40) ns 67.60(25) ns

7.6 comparison with existing decay data

The Decay Data Evaluation Project (DDEP) data on 57Co provides 98.0(4) ns for the
half-life of the 14.4 keV level of 57Fe [85]. It is taken as the weighted average of 7

measurements:

1. In [123] from 1961 Clark reports 97.9(2) ns via two NaI detectors.

2. In [124] from 1965 Kistner and Sunyar report 98(1) ns.
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3. In [125] from 1966 Eckhause et al. report 97.7(2) ns via two NaI detectors.

4. In [126] from 1969 Hohenemser et al. report 99.3(5) ns via Time-differential
perturbed angular correlation.

5. In [127] from 1978 Alikov et al. report 97.8(14).

6. In [128] from 1995 Ahmad et al. report 99.2(4) ns via two HPGe detectors.

7. In [129] from 2006 Morozov et al. report 94(4) via autocorrelation single-crystal
scintillation time spectrometer with plastic scintillators and a single XP2020 PMT.

It should be noted that there is a significant discrepancy between the different measure-
ments. The obtained half-life value in this work is 97.90(40) ns which is in agreement
with reports 1 and 3 within the estimated uncertainties, but not with reports 4 and 6;
reports 2, 5 and 7 have large uncertainties, and thus are in agreement.

The DDEP data on 57Co states 8.6(4) ns for the half-life of the 136.5 keV level of 57Fe.
It is taken as the weighted average of 5 measurement, which are consistent within their
stated uncertainties. The result from this study, 8.780(36) ns, has the lowest uncertainty
compared to previous measurements and is consistent with the already provided
average value.

The Nuclear Decay Sheets (NDS) state 68.1(2) ns for the half-life of the 59.54 keV
level of 237Np [130]. The value is the weighted average of 5 measurements, the most
recent of which is from 1972. The value obtained in this study does not agree with the
stated average value which could be caused by the very low uncertainty of the 1972

measurement 68.3(2) ns [131]. This low uncertainty is increased to 0.7 ns (1%) by the
evaluator in the ENSDF2 dataset and the obtained weighted average value is 67.2(7) ns,
which is consistent with the result obtained in this work.

conclusions

The half-lives of two excited nuclear states in 57Fe and one in 237Np were measured
by means of LS–LS and LS–γ coincidences. The half-life of the 59.54 keV level of 237Np
was measured by LS–γ coincidences and the result is 67.60(25) ns, which is in good
agreement with already published decay data. The half-life of the 14.4 keV level of 57Fe
was measured by LS–LS coincidences and the result is 97.90(40) ns which is consistent
with some of the published results, however a significant discrepancy exist between the
values found in the literature. The half-life of the 136.47 keV level of 57Fe was measured
also by LS–LS coincidences and the result is 8.780(36) ns, which is consistent with the
published data and comes with a significant improvement in the uncertainty.

Liquid scintillation fast timing measurements can be a useful tool to refine some
already known decay times. Another advantage over more-commonly used methods
is the relatively short measurement time that is needed, due to the 4π geometrical

2 Evaluated Nuclear Structure Data File from Brookhaven National Laboratory
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efficiency. This could allow more precise studies of half-lives of excited states of short-
lived nuclides where long measurements are difficult to perform and to isotopes in
liquid phase. The method employing LS–LS coincidences is shown be useful for precise
measurements of half-lives as short as 8 ns. The results from this study are published
in Applied Radiation and Isotopes [132].
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E VA L U AT I O N O F A C C I D E N TA L C O I N C I D E N C E S I N T D C R
C O U N T I N G

L
iquid scintillation counters with three PMTs as well as electronics with coin-
cidence circuits and extending type dead-time are needed to properly apply
the TDCR method to radioactivity measurements. What is usually recorded

are the coincidences between three PMTs (triple coincidences) and between pairs of PMTs

(double coincidences). As with all other systems working in coincidence, there exists
the possibility for two or more unrelated events to occur within the same coincidence
window which will result in an accidental coincidence (also known as chance or random
coincidence).

Accidental coincidences were mostly ignored in the past due to the usually short coin-
cidence windows that are fixed in analogue TDCR counting modules (commonly 40 ns).
Another method to minimize the influence of chance coincidences that is commonly
employed is to measure sources with not so high activity. With the recent advancement
in the field of digital electronics the possibility to use longer, user-selectable coincidence
windows has been opened. As an effect, an emergence of systems can be seen recently
that use fast digitizers [133] or FPGA-based devices [101, 102, 134].

The rate of random coincidences increases with increasing coincidence resolving time
and thus their accurate assessment is necessary to study long coincidence windows.
Another field of study where chance coincidences cannot be neglected is the in situ
metrology of LS-sources used in the nuclear energy and medical fields, where the sources
could have considerable activities. In such cases the accidental coincidences cannot
be neglected. There has been a recent trend towards the development of miniature
portable TDCR counters whose aim is to be used for in situ metrology [104, 135].

In this chapter a method for the experimental evaluation of accidental coincidences is
presented. The method is complemented with analytical expressions that can be used to
calculate the chance coincidences in any TDCR system that provides information about
the single, double and triple counting rates. The methods and equations are validated
with artificially generated data using a Monte Carlo approach.

8.1 experimental evaluation of accidental coincidences

Due to the stochastic nature of the light emission from scintillators, the individual
scintillation events are spread out in time with respect to the initial interaction of an
ionizing particle with the medium. For high-energy emitters the events are grouped
within a short period of time, e. g., 16 ns for 18F with 633 keV maximum energy of
the β particles [134]. For lower-energy emitters, one example being 3H with 18.6 keV

113
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maximum β-spectrum energy, the spread of events could be much larger. Studies in
the past decade suggest that the necessary coincidence resolving time to gather all
scintillation events is as high as 250 ns [82]. From the studies presented in Chapter 4

it can be seen that even 300 ns might be insufficient. The incidence of true events
decreases with the time elapsed from the initial radioactive decay and after a few
microseconds the probability for occurrence becomes negligible. Therefore, primary
events with a difference in time of arrival longer than several microseconds can be
considered uncorrelated.

The analysis of the distribution θi(t) of the time differences ∆t between the first
and last primary event in a given coincidence channel (i = AB,BC,AC,D, T ) can give
information about correlated and uncorrelated events. This distribution and its analysis
are the basis of the experimental method for evaluation of random coincidences. An
important step in the method is to construct the proper time interval distributions for
each coincidence channel. This is straightforward in a two PMT detector where the
distribution of interest is the distribution of the absolute time difference between one
PMT and the other. For a three PMT detector the proper procedure to construct the time
interval is more sophisticated. In a TDCR detector there are many possible coincidences,
including complex logic such as for the logical sum of double coincidences D. The
calculation of the time differences ∆t for the AB, D and T channels is coded in the
list_mode_analysis program as described in Chapter 3. A schematic of the logic is
shown in that chapter in Figure 3.1.

Let us consider a common dead-time detector with counting logic as used in the
MAC3 module [100]. For such a detector the distribution of the rate of events fi(t) with
a given time difference t for a given coincidence channel i can be defined as:

fi(t) =
θ(t)

L
, (8.1)

where L is the live-time of the detector. The distribution fi(t) will be referred to as a
time interval distribution from here on. It is defined in such a way that:

ni =

∫τ
0

fi(t)dt, (8.2)

where ni is the counting rate in channel i. The definition is such that if the ni is
calculated from the time interval distribution for a specified coincidence resolving
time τ, the same counting rate would be reported by a TDCR detector for the same
coincidence window length.

The time interval distribution that is observed in practice consists of two parts: the
distribution of true coincidences ftc and the distribution of accidental coincidences
facc. An illustration of the concept is given in Figure 8.1. If it can be assumed that
the detection of accidental coincidences is a Poisson process, then the time interval
between the events is exponentially distributed. The total time distribution can then be
expressed as:

ftot(t) = ftc(t) + a0e
−λt, (8.3)
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where a0 is the rate of accidental coincidences at t = 0 and λ is the rate of detected
events in the coincidence channel.

If a large enough time difference t is considered, the probability of true coincidences
will be close to zero. The total distribution in this time interval will be dominated only
by the distribution of chance coincidences:

ftot(t) = a0e
−λt for t > tc, (8.4)

where tc is the cut-off time difference. The cut-off time should be selected such that for
longer times the probability for true coincidences can be considered negligible.

In most measurements done in practice, the exponential nature of accidental coin-
cidences can be simplified as the observed counting rates are not high enough. For
example, the commonly measured counting rates are lower than 104 s−1 and the width
of the analytical time interval distribution (te) is less than 2×10−6 s. The exponent in
equation (8.4) can be approximated well with a linear function as the argument will be
less than 2× 10−6:

facc(t) = a0(1− λt). (8.5)

In the case of even lower counting rates the equation can be simplified further:

facc(t) = a0 for t < te, (8.6)

where te should be short enough for λte to be considered negligible.
The distribution of the accidental coincidences has two parameters, λ and a0. They

can be estimated by fitting facc from equations (8.4), (8.5) or (8.6) to the experimentally
obtained time interval distribution in the interval (tc, te). If the parameters of the
distribution are known, then the counting rate of the random coincidences can be
evaluated from the integral of the distributions within the coincidence resolving time:

ai =

∫τ
t=0

f
(i)
acc(t)dt. (8.7)

where f(i)acc(t) is the distribution of accidental coincidences of the ith coincidence channel
(AB,BC,AC,D or T ). This approach assumes that the parameters of the distribution are
the same for the time interval where the fit was performed and within the coincidence
window. The assumption holds if random coincidences are Poisson distributed.

The experimental approach towards the evaluation of random coincidences is advan-
tageous because the only assumptions made are that primary event separated by several
µs are uncorrelated and that random coincidences are Poisson distributed. The validity
of those assumptions can be checked by analyzing the time interval distribution.

8.2 analytical calculation of accidental coincidences

A major disadvantage of the experimental method is that it requires a fast digitizer and
a lot of computational power in order to construct the time distribution of events in



116 evaluation of accidental coincidences in tdcr counting

0 200 400 600 800 1000 1200 1400

tc te

C
ou

nt
in

g
ra

te
,a

rb
.u

ni
ts

Time between primary events ∆t, ns

True coincidences, ftc(t)

Accidental coincidences, a0 exp(−λt)
Total distribution, ftot(t)
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each coincidence channel. This is undesirable in some cases. Therefore, an analytical
approach to the problem of random coincidences in TDCR counting was also developed.
It is based on the conditional probabilities for the occurrence of uncorrelated events
within the same coincidence window.

In a detector with three PMTs one can define many channels of scintillation events –
with or without coincidences. The structure of channels that is commonly used in TDCR

counting is given in the work of Broda et al. [2]:

• three single event channels (A,B,C)

• logical sum of singles (S = A∨B∨C)

• three double coincidence channels (AB = A∧B,BC = B∧C,AC = A∧C)

• logical sum of the double coincidences channel (D = AB∨BC∨AC)

• triple coincidence channel (T = A∧B∧C)

Here ∧ denotes the logical “and” operator and ∨ the logical “or” operator. Within
this convention there is a correlation between the various channels, e. g., all T channel
events are also included in all other channels, all BC events are also B, C and S events,
etc.

To simplify the coincidence logic, a set of uncorrelated channels can be devised:

• three pure single event channels that exclude doubles and triples:
PA = A∧¬(B∨C); PB = B∧¬(A∨C); PC = C∧¬(A∨B)

• three pure double coincidence channels that exclude triples:
PAB = AB∧¬C; PBC = BC∧¬A; PAC = AC∧¬B

• the logical sum of the pure single events channel:
PS = PA∨ PB∨ PC
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Figure 8.2: Venn diagram of the uncorrelated and correlated coincidence channels. The areas
representing PA and PBC are surrounded with dashed lines.

• the logical sum of pure double coincidences channel:
PD = PAB∨ PBC∨ PAC

• pure triple coincidence channel:
PT = T .

Here ¬ is the logical “not” operator. The PA channel, for example, contains all A events
that are not B or C events. This excludes all A events that are correlated to other single
or coincidence channels. As a visual example, the pure channels PA and PBC are
outlined by dashes in Figure 8.2.

The counting rates pi in the newly constructed uncorrelated set of channels can be
estimated as:

pA = nA −nAC −nAB +nT

pB = nB −nAB −nBC +nT

pC = nC −nAC −nBC +nT

pAB = nAB −nT

pBC = nBC −nT

pAC = nAC −nT

pS = pA + pB + pC = nS −nD

pD = pAB + pBC + pAC = nD −nT

pT = nT

(8.8)

where ni are the counting rates in the commonly used set, for which a correlation exists
between the channels.

There exists a well known formula for the rate of random coincidences Na between
two uncorrelated detectors. One of the earliest occurrences in the literature is given by
Janossy [136]:

Na = 2τ(N1N2). (8.9)

Here, with the coincidence resolving time of the detector is denoted with τ.
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The accidental coincidence counting rate between two uncorrelated channels can
be calculated by using equation (8.9). For example, PA and PB detected within the
same coincidence window would result in an accidental AB coincidence. The sum of
all such coincidences between uncorrelated channels, which result in a signal in the
given channel, give the total number of random coincidences in that channel.

We can roughly distinguish two types of accidental coincidences that can be observed.
The first type of coincident events are more obvious and consists of two signals, that
when detected simultaneously, fall into another channel. For example, a PAC and a
PAB event coming in the same coincidence window will be falsely attributed to the T
channel. The same pair of uncorrelated events will result in a BC coincidence as well. It
is important here to note that the same train of thought cannot be used for the AC and
AB channels, as some of these events could be true T coincidences.

The second type of random coincidences could evade the analysis at first sight. It
consists of events in the channel of interest that are detected during the resolving time
started by another channel. The logic is better illustrated with an example: if a PA event
is the first event in a coincidence window and an event in the PBC channel is also
detected in the same window afterwards, then the PAB event will contribute to the
accidental coincidences in channel AB. Despite PAB being a legitimate AB event, it is
still considered an accidental coincidence due to the fact that it is detected within the
window started by an uncorrelated event. The order of the time of arrival of events in
this type of random coincidences is important however. Regarding channel AB, a PAB
coincidence detected after a PC single event is accidental, but the reverse does not hold
true. A PC single event detected after a PAB coincidence would not lead to an invalid
AB coincidence. Thus, the factor of 2 must be omitted in (8.9).

Let us consider a full example of how to calculate the chance coincidences in a channel.
This can be done by summing all possible variants from the two types of accidental
coincidence. Taking the AB channel as an example, the contributions belonging to the
first type are:

1. PA within the same resolving time as PB: 2τ(pApB),

2. PA within the same resolving time as PBC: 2τ(pApBC),

3. PB within the same resolving time as PAC: 2τ(pBpAC),

4. PAC within the same resolving time as PBC: 2τ(pACpBC).

The contributions that are of the second type are:

1. PAB in the window started by a non PAB event:
τ(pA + pB + pC + pBC + pAC)pAB

2. PT in the window started by a non PAB event:
τ(pA + pB + pC + pBC + pAC)pT
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The counting rate of the random coincidences ai in the remaining channels can be
calculated by following similar logic. They are expressed as:

aAB =
[
2 (pApB + pA pBC + pBpAC + pACpBC)

+ (pS + pD − pAB) (pAB + pT )
]
τ

aBC =
[
2 (pBpC + pB pAC + pCpAB + pABpAC)

+ (pS + pD − pBC) (pBC + pT )
]
τ

aAC =
[
2 (pApC + pA pBC + pCpAB + pABpBC)

+ (pS + pD − pAC) (pAC + pT )
]
τ

aD =
[
2 (pA pB + pB pC + pC pA) + pS(pD + pT )

]
τ

aT =
[
2 (pA pBC + pB pAC + pC pAB) + (pS + pD)pT

+ 2 (pBC pAB + pAC pBC + pAC pAB)
]
τ

(8.10)

Equations (8.8) and (8.10) are a large milestone as they can be applied to all already
used TDCR systems that output the single, double and triple counting rates. The es-
timate of the accidental coincidences using the analytical equations must be applied
with care as there are a few assumptions that are involved. Firstly, the coincidences
nAB,nBC,nAC and nT that the detector outputs are the total, i. e., true as well as acci-
dental coincidences. For low enough counting rates this would not be a hindrance, but
it would be if the contribution of random coincidences is a significant fraction of the
total. To minimize the effect, the measurements should be performed with a coincidence
resolving time that is large enough not to miss true coincidences, but not larger, as this
would increase the contribution of accidentals unnecessarily. Another point that has to
be mentioned is that second order (or higher) random coincidences are not included
in equation (8.10) because it is considered that they have negligible contribution. This
means random coincidences of the type PA,PB and PC events detected in the same
coincidence window and producing an erroneous T coincidence. These approximations
do not concern the experimental method for evaluation, and thus equation (8.10) should
be used only when the contribution of random coincidences is not overwhelming. The
uncertainty of the evaluated accidental coincidences is not derived so far, but as this
correction is expected to be small in the usual use cases, then its uncertainty would be
insignificant.

8.3 validation of the methods

Measurements of four LS-sources were used to validate the developed methods. The
sources are: two samples of 3H – UltimaGold in Polyethylene vial, one 55Fe – UltimaGold
in Polyethylene vial and one 14C – UltimaGold in glass vial. One of the 3H sources and
the 55Fe source were prepared with high activity (≈ 23 kBq) in order to emphasize the
contribution of random coincidences. The same pair of sources was also measured by
placing a 75% transparent grey filter between the vial and PMTs.
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Figure 8.3: Time distributions in the D channel of 3H and 14C sources. The mean value of the
coincidences between uncorrelated events is shown with a solid line.

The measurements were done with a portable TDCR detector (miniTDCR). The outputs
of the PMTs were connected to a CAEN DT5751 digitizer with 1 GS/s sampling rate. The
digitizer was set up to record the timestamp of incoming event in a list-mode file. The
files recorded in each measurement were analyzed off-line by the list_mode_analysis

software described in Chapter 3. The program was used to calculate the coincidence
counting rates as well as the time distributions in each channel.

application of the experimental method The following paragraph presents
an example of the application of the experimental method. The D time distributions
from the measurements of the 23 kBq 3H source and the 6.2 kBq 14C source are shown
in Figure 8.3. In these examples the large time spread of events is evident. The necessary
time to gather all 3H events seems to be as high as 1300 ns. The signals from 14C are
better grouped in time, but still the needed window is close to 400 ns. For the proper
application of the experimental method, the distribution of random coincidences must
be well separated from the true coincidences. As the counting rates in the sources
are not very large, a uniform distribution of the random coincidences was assumed
instead of the expected exponential distribution. In this case equation (8.6) was fitted to
the experimental data in the interval 1300 ns – 3000 ns for the 3H source and 400 ns
– 3000 ns for the 14C source. The random coincidence counting rate per nanosecond
of coincidence window is evaluated at 0.107 s−2 for the 3H source and at 0.018 s−2

for the 14C source. For a 100 ns coincidence resolving time the counting rates of the
accidental coincidences in the two samples are 10.7 s−1 and 1.8 s−1, respectively. In
order to obtain the counting rates in the other coincidence channels the same analysis
can be performed on the respective time distributions.
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By integrating the time distribution in a channel from t = 0 to t = τ, one obtains the
counting rate in that channel as if a normal measurement with coincidence window
τ was performed. Figure 8.4 shows the counting rate in the D channel of the 3H
measurement with respect to the coincidence resolving time (shown with a solid red
line). The counting rate is normalized by the value corrected for accidentals at 2 µs.
For coincidence windows less than 500 ns a significant loss of coincidences can be
seen. This is due to the large spread of scintillation events for the low-energy β-emitter
that is 3H. For larger coincidence windows the counting rate increases even further.
The increase is due to the larger probability for accidental coincidences. The already
determined counting rate of random coincidences was used in order to perform a
correction. The corrected counting rate as a function of the resolving time can be seen
in the same figure with a solid blue line. After the correction for accidental coincidences
the counting rate is constant, provided the coincidence window is sufficient to include
all true coincidences.

comparison of experimental and analytical methods The analytical
approach towards the calculation of random coincidences relies on several assumptions.
While they should be appropriate in most practical cases, it is reasonable to compare
the analytical approach to the experimental method. The assumptions in the latter
are less constraining and are easily satisfied in practice. Thus, the correctness of the
analytical equations can be validated by comparing the evaluated random coincidence
counting rates to the ones obtained by the experimental approach. To do so, the
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Nuclide TDCR
Correction

method
Accidental coincidences, s−1 Corrected counting rate, s−1

AB∗ T D AB∗ T D

3H
23 kBq ∗∗

0.3998

Calc.
Expt.
∆

ai/ni

84.74 85.82 83.49 5986.8 4055.9 10145.2
85.24 86.34 83.59 5986.3 4055.4 10145.1

−0.59% −0.60% −0.12% 0.01%
1.40%

0.01%
2.08%

0.00%
0.82%

0.2080
(with filter)

Calc.
Expt.
∆

ai/ni

54.63 37.43 83.52 2209.8 981.5 4719.5
54.44 37.09 83.29 2210.0 981.8 4719.7
0.36% 0.93% 0.27% −0.01%

2.4%
−0.04%
3.64%

0.00%
1.73%

3H
2.4 kBq

0.4018

Calc.
Expt.
∆

ai/ni

2.57 1.67 4.39 548.5 370.2 921.4
2.57 1.72 4.63 548.5 370.2 921.2
0.00% −3.27% −5.15% 0.00%

0.47%
0.02%
0.46%

0.03%
0.50%

55Fe
24 kBq ∗∗

0.2809

Calc.
Expt.
∆

ai/ni

40.07 38.98 41.99 3300.1 1806.0 6429.4
40.24 39.04 42.69 3300.0 1806.0 6428.7

−0.42% −0.14% −1.63% 0.01%
1.20%

0.00%
2.12%

0.01%
0.66%

0.1248
(with filter)

Calc.
Expt.
∆

ai/ni

25.65 14.03 48.80 989.1 299.5 2399.6
25.26 13.63 47.24 989.5 299.9 2401.1
1.54% 2.93% 3.30% −0.04%

2.49%
−0.13%
4.35%

−0.06%
1.93%

14C
6 kBq

0.9315

Calc.
Expt.
∆

ai/ni

1.93 1.82 1.94 5651.3 5513.3 5918.6
1.93 1.82 1.94 5651.3 5513.3 5918.6
0.00% 0.00% 0.00% 0.00%

0.03%
0.00%
0.03%

0.00%
0.03%

* The results for the BC and AC channels were found to be similar and were omitted for brevity.
** The same source was measured twice, first without a filter (upper row) and a second time with a 75%
transparent gray filter (lower row).

Table 8.1: Comparison of the analytical (Correction method: Calc.) and the experimental (Cor-
rection method: Expt.) methods.

same list-mode files with measurements of the four LS-sources were analyzed with
the list_mode_analysis software. The selected dead-time base duration was 40 µs.
The coincidence window width was chosen such as to include all true coincidences.
Contrary to the usually used short coincidence resolving times, the values were found
to be 100 ns for 14C and 800 ns for 3H and 55Fe.

The resolving time that is needed to collect all true coincidences was determined
by analyzing the corrected counting rates in each of the coincidence channels. From
the example in Figure 8.4, in order to miss 0.1% of the D coincidences the necessary
resolving time is 550 ns. To reach the same accuracy in the T channel it would be
necessary to use 800 ns coincidence window. A major finding from the initial studies
on the correction for accidental coincidences was the significant dependence of the
counting rates on the coincidence window width. The full analysis of the time spread
of events in commercial LS cocktails will be presented in the next chapter.
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The experimental method was applied using the time distributions obtained from the
same list-mode data that was used to calculate the counting rates for the esitmate with
the analyical aproach. The random coincidences counting rates were calculated using
equation (8.7) with the assumption for a uniform distribution in the interval from 2 µs
to 2.5 µs. The time interval was chosen conservatively to ensure that the probability
for true coincidences is negligible for all studied LS-sources. The obtained accidental
coincidence counting rates ai are shown in Table 8.1. The corrected counting rates
were calculated by subtracting the estimate chance coincidence rate from the measured
counting rates. The difference between the two methods ∆ is calculated as:

∆ = Ncalc/Nexpt − 1, (8.11)

where Ncalc is accidental coincidence counting rate from equation (8.10) and the same
quantity from the experimental method Nexpt.

The random coincidences estimates provided by the two methods agree within 3.30%
for the measurements of the 55Fe and 3H sources with high activities. The differences
seem to be larger when the measurements were performed with a filter, thus lowering
the detection efficiency, compared to the measurements without a filter. The agreement
between the methods is satisfactory for the 2.4 kBq 3H source. In that case, the counting
rate of the chance coincidences is low and is subject to relatively large statistical
fluctuations. The agreement between the two methods is perfect for the 14C source.

The two methods do not give identical results for the counting rate of the accidental
coincidences. Nevertheless, the agreement between the corrected counting rates is very
good. The relative deviations are below 0.13% in all performed measurements and
below 0.02% if only the higher efficiency measurements without a filter are considered.
It is important to note here that the increase in the accidental coincidences is not linear
with the activity of the source. For the two 3H sources that were studied, a 10 times
increase in the activity results in 50 times increase in the triple and 20 times increase in
the logical sum of doubles random coincidences counting rates.

If the 23 kBq 3H source measurements are considered, the relative contribution of
the accidental coincidences in the D channel increases from 0.82% to 1.73% when the
detection efficiency is reduced. Similarly, for the 55Fe measurements: without a filter
the contribution of the accidental coincidences is 0.66% and with a filter it increases to
1.93%. It can be concluded that the contribution of random coincidences is significantly
affected by the detection efficiency. This is understandable as the reduced efficiency
would lead to more single events being detected at the expense of double and triple
coincidences. Thus, the useful signal is decreased and the noise events are increased,
which leads to a higher probability to register uncorrelated events in coincidence.

dependence of the analytical estimate on the coincidence window

In order to calculate the counting rate of random coincidences, the analytical equa-
tions use the measured counting rates. These, however, already include accidental
coincidences. It presents interest to check, whether there is a significant effect on the cal-
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culation based on the fraction of the total coincidences that are accidental. By increasing
the coincidence resolving time to a higher value than the one needed to collect all true
coincidences, the contribution of random coincidences to the measured counting rates
will rise. Conversely, if a very short coincidence window is used, it will lead to a loss of
true coincidences which could possibly influence the estimate of chance coincidences.
As the experimental estimation does not depend on the used coincidence window,
but only on the obtained time interval distributions, it can be used as a reference to
compare the analytical approach.

A comparison of the two methods was performed by analyzing the data from the
23 kBq 3H LS-source with various coincidence windows from 200 ns to 3 µs. The
results from the experiment are presented in Table 8.2. Equations (8.8) and (8.10) to
calculate counting rates of random (Method: Calc.) as well as true coincidences. The
latter is calculated by subtracting the contribution of chance coincidences from the
measured counting rates. The experimental approach was applied to the D and T time
distributions. Equation (8.7) was used to evaluate the accidental coincidences (Method:
Expt.), assuming uniform distribution in the interval between 2 µs and 2.5 µs. The
difference between the two methods is calculated using equation (8.11). While there
are some minor differences in the estimated counting rates of random coincidences,
no significant difference in the true counting rates can be seen. In the latter case the
two methods agree within 0.1% for all studied coincidence windows. The comparison
shows that the analytical approach at the estimation of accidental coincidences does
not depend significantly on the choice of resolving time and can be used freely even in
cases where a fraction of the true coincidences is lost.

monte carlo simulation The validations performed on the methods thus far
suffer from a significant drawback and that is the lack of knowledge of the true counting
rates. This can be circumvented, however, by using artificially generated data using
the Monte Carlo code for generation of realistic time sequence of PMT detection events,
which is briefly presented in [103]. The same code was also used for validation of
the comparison between common and individual dead-time counting logics used in
TDCR (see Chapter 4). A brief recap of the function of the code follows: the activity of
the source whose measurement would be simulated and the single and coincidence
counting rates are used as an input. The time to next decay is sampled from exponential
distribution with a decay constant calculated from the input activity. The time between
PMT detection events in a given decay is sampled from an approximation of a real
time interval distribution. The code outputs list-mode data with timestamps and PMT

number, similar to a measurement with a digitizer. The generated files were analyzed
with the same software used for the experimental measurements, thus eliminating
possible differences from the analysis technique. The defining feature of the Monte
Carlo approach is that it can output the simulated counting rates in the single and
coincidence channels. This gives a concrete reference to which the two methods can be
compared.
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Resolv.

time, ns

Corr.

method

D acc.,

s−1

D true,

s−1

T acc.,

s−1

T true,

s−1

200

Calc. 21.3 10056.5 21.3 3994.2

Expt. 20.9 10056.8 21.6 3993.9

∆ 1.69% 0.00% -1.38% 0.01%

800

Calc. 83.5 10145.2 85.8 4055.9

Expt. 83.6 10145.1 86.3 4055.4

∆ -0.12% 0.00% -0.60% 0.01%

1000

Calc. 104.1 10148.5 107.4 4057.8

Expt. 104.5 10148.1 107.9 4057.3

∆ -0.41% 0.00% -0.49% 0.01%

2000

Calc. 205.4 10155.0 215.8 4059.3

Expt. 209.0 10151.5 215.8 4059.2

∆ -1.71% 0.04% 0.00% 0.00%

3000

Calc. 304.2 10158.2 325.0 4055.8

Expt. 313.5 10149.0 323.8 4057.1

∆ -2.94% 0.09% 0.39% -0.03%

Table 8.2: Comparison between the
analytically calculated (Calc.) and ex-
perimentally (Expt.) obtained D and T
accidental and true coincidence count-
ing rates at different resolving times.

List-mode files for a 3H sample with activities from 2 kBq to 200 kBq were generated
with the code. Contrary to a real measurement, the output does not contain noise or
PMT after-pulses. Thus, the chosen dead-time base duration for the analysis was 10 µs.
The coincidence resolving time was set to 800 ns. The same window was used for
the real 3H measurements. The measured counting rates (Correction method: None)
were compared to the reference given by the Monte Carlo code (see Table 8.3). It
should be emphasized here, that, by using artificial data, it is possible to know the exact
true coincidences counting rate. A significant discrepancy can be observed between
the measured and reference counting rates, a discrepancy which increases with the
simulated activity. For example, the discrepancy in the T channel is 0.14% for the 2 kBq
simulation and increases up to 15.28% for the 200 kBq simulation.

Equations (8.8) and (8.10) were used in order to estimate the contribution of random
coincidences according to the analytical method. The contribution of the accidental
coincidences was subtracted from the measured counting rates giving the counting
rates of true coincidences. These were then compared to the reference (Correction
method: Calc.). For simulations up to 60 kBq, the discrepancy between the corrected
and reference counting rates is less than 0.12%. For 100 kBq and 200 kBq there is
an increase in the discrepancy. It could be attributed to the large contribution of the
accidental coincidences to the measured counting rates, which are used to calculate the
correction. Another possibility is the low number of recorded events, due to the huge
global dead-time close to 100%. Nevertheless, even for activities as high as 100 kBq, the
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Table 8.3: Comparison of the uncorrected and corrected by the two methods
(Calc. and Expt.) counting rates with the Monte Carlo generated reference
counting rates.

Activity Correction
method

Difference from Monte Carlo reference, %

AB∗ D T

2 kBq
None 0.11 0.06 0.14
Calc. −0.01 −0.02 −0.02
Expt. −0.01 −0.02 −0.02

10 kBq
None 0.59 0.42 0.76
Calc. −0.03 0.00 −0.05
Expt. −0.01 0.01 −0.04

20 kBq
None 1.23 0.85 1.59
Calc. −0.01 0.01 −0.03
Expt. −0.02 0.03 −0.06

40 kBq
None 2.43 1.64 3.13
Calc. −0.07 −0.01 −0.12
Expt. 0.01 0.04 −0.02

60 kBq
None 3.69 2.50 4.78
Calc. −0.04 0.02 −0.10
Expt. −0.03 −0.01 −0.06

100 kBq
None 6.07 4.11 7.90
Calc. −0.12 0.08 −0.29
Expt. 0.10 0.16 0.13

200 kBq
None 11.71 7.91 15.28
Calc. −0.61 0.20 −1.31
Expt. 0.08 0.21 −0.18

* The results for the BC and AC channels were similar and were omitted for brevity.

corrected counting rates are within 0.29% from those simulated by the Monte Carlo
code.

The same artificially generated list-mode data was used to obtain the time distribu-
tions in the coincidence channels. Up to 40 kBq the assumption for uniform distribution
of accidental coincidences in the interval between 1500 ns and 2000 ns was deemed
valid. For the larger activities, above 60 kBq and up to 200 kBq, the assumption does
not hold due to the very high counting rates. Therefore, the accidental coincidence
counting rates were obtained by fitting the linear equation (8.5) to the time interval
distribution in the same time interval. The corrected for coincidence counting rates
were compared to the Monte Carlo reference (Correction method: Expt. in Table 8.3).
For activities up to 60 kBq, the results from the experimental method are within 0.06%
of the reference. For larger activities (100 kBq and 200 kBq) the discrepancy is higher,
but still within 0.21%.



8.3 validation of the methods 127

conclusions

In this chapter, an experimental method to evaluate the counting rate of accidental
coincidences in TDCR measurements was proposed. The method was used to derive
and validate analytical expressions that can be used to directly calculate corrections for
random coincidences with data from standard TDCR systems. The work was published
in the journal Nuclear Instruments and Methods, Section A [103].

The analysis of the list-mode data shows that the analytical and experimental evalua-
tions provide comparable results for 3H, 55Fe and 14C measurements. The contribution
of random coincidences increases with reduction of the counting efficiency. The count-
ing rate of true coincidences does not seem to depend significantly on the choice
of coincidence resolving time for the studied 23 kBq 3H LS-source if the analytical
approach is used.

Both methods were used to evaluate corrections for accidental coincidences for Monte
Carlo generated 3H measurements with activities from 2 kBq to 200 kBq. The correction
according to the analytical method is consistent with the Monte Carlo reference to
within 0.29% up to 100 kBq. The experimental method deviates less than 0.06% from
the reference counting rates up to 60 kBq and less than 0.21% up to 200 kBq.

A note should be made here, that the corrections for accidental coincidences should
be applied not only to the measurements of the radioactive source, but also to the
measurements of the blank sample that is used for background correction. Due to the
usually low counting rates in the coincidence channels of the blank sample, the single
counting rates are relatively high. For example, a typical blank measurement with a
TDCR detector at Sofia University has 12 cps in the double coincidences channels and
around 400 cps in the single channels. Therefore, the contribution of the accidental
coincidences to the double counting rates is significant.

The analytical equations can be used to evaluate the rate of accidental coincidences
in measurements performed with most existing TDCR acquisition systems, the only
requirement being that they output the single, double and triple coincidence counting
rates. The correction for random coincidences provides the opportunity to study
long coincidence windows. The corrected time distributions indicate that the use of
short resolving times leads to a loss of coincidences in low-energy radionuclides. The
accidental coincidences corrections will improve the non-linearity of TDCR systems used
for studies of short half-life medical nuclides line 11C, 15O or 18F. They will allow TDCR

measurements of sources with high activities, where the contribution of accidental
coincidence cannot be neglected.
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T H E D E L AY E D F L U O R E S C E N C E A N D T H E T D C R M E T H O D

T
he maximum difference in the time of arrival of two events that are considered
in coincidence is the coincidence resolving time or the coincidence window.
It is set in accordance with the used scintillator and, usually, the goal is to

catch most of the true coincidences, while avoiding unnecessary increase of accidental
coincidences. While the loss of a fraction of true coincidences may not be so critical
for a two PMT detector, it could skew the results from a three PMT system such as
a TDCR counter. The reason behind this difficulty is that the TDCR method uses the
ratios of the triple to double coincidences to calculate the detection efficiency [2]. If
the used coincidence window is too short, a fraction of coincidences could be missed.
This fraction may well be different for the doubles and triples, leading to a bias in the
efficiency and, therefore, activity calculated by the method.

The commonly used coincidence resolving time in TDCR counting is the one set in
the MAC3 acquisition module [100] – 40 ns. As seen in the previous chapter, this may
be insufficient to gather all true coincidences for low-energy nuclides such as 3H and
55Fe. In addition, a study of the time dependence of scintillation light of a commonly
used solvent/fluor combination diisopropylnaphtalene (DIN) and 2,5-diphenyloxyzole
(POP) reports scintillation events up to 1.5 µs [17]. Such findings raise the question: Is
it not necessary to increase the used coincidence resolving time?

As already mentioned in Chapter 1, there are predominantly two types of lumines-
cence which can occur in organic molecules: prompt and delayed fluorescence. The
prompt component is the result of transitions from singlet S1 to S0 states of the solvent.
Its intensity decays exponentially with time and its lifetime is in the order of a few
nanoseconds [7]. The delayed component emissions are more spread in time and can
occur up to a few µs after the excitation of the solvent. Its origin are triplet-triplet
interactions resulting in S1 excitations, e. g., T1 + T1 → S1 + S0 [7].

Reports on the influence of the coincidence window on the activity determined by
the TDCR method can already be found in the literature, however, the studies usually
encompass a few hundred nanoseconds. No corrections for accidental coincidences
were performed previously as well. In one study of 3H in Insta-Gel [137] the studied
coincidence windows are at maximum 200 ns and in another study of 3H in HionicFluor
and UltimaGold cocktails [138], coincidence resolving times up to 400 ns were analyzed.
Such resolving times should be sufficient to collect all events due to prompt fluorescence.
Delayed fluorescence events, however, could be missed, and they may have a non-
negligible contribution to the overall light emission [7].

An increase in the number of in-house made TDCR acquisition systems can be seen due
to the recent advancements in the field of digital electronics. They all have the possibility

129
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to use arbitrarily long resolving times [101, 102, 104, 134, 135]. Moreover, the constraint
on the coincidence window due to possible contribution from increased accidental
coincidences is removed with the presented correction methods (see Chapter 8 or [139]).

These circumstances give the opportunity to expand the maximum coincidence win-
dow to be long enough to register all scintillation light, including delayed fluorescence.
Care must be taken, however, because, as previously stated, delayed fluorescence could
have different ionization quenching properties than prompt fluorescence. The latter is
the only type of fluorescence considered in Birks’ ionization quenching formula [7]. In
addition, the TDCR model has been shown to be very sensitive to the parameters used
to describe the ionization quenching for low-energy β emitters like 3H [80].

The objective of the work presented in this chapter is to stress the dependence of
the measured counting rate and calculated activity on the used coincidence resolving
time. The emphasis is on the use of long enough coincidence windows that do not
miss correlated scintillation events and the influence of delayed fluorescence in that
case is also discussed. The main novelty lies in the fact that the results are corrected for
accidental coincidences, which cannot be neglected when using long resolving times.

9.1 measurement of time distributions of ls-sources

experimental setup and sources The understanding of the influence of the
delayed fluorescence on TDCR measurements starts with the acquisition of time in-
terval distributions. This was done using a miniature 3D-printed miniTDCR counter
connected to a fast digitizer. The counter is equipped with three Hamamatsu R7200U-
200 PMTs [91] connected to a CAEN DT5751 digitizer [109] with 1 GS/s sampling rate.
The system records all incoming events in list-mode file for off-line analysis with the
list_mode_analysis software (see Chapter 3 for details). In one experiment, the French
primary TDCR counter (RCTD1) [140] was also used to verify results obtained with the
miniTDCR. The RCTD1 is equipped with three Burle 8850 PMTs connected to a nanoTDCR

device [101] after an amplifier and a discriminator.

Table 9.1: Composition of the studied sources.

Source name Nuclide Avg. TDCR εD Activity, Bq LS cocktail Vial type mH2O/mtot, g

H3-UG 3H 0.399 0.43 23000 UG PE 0.1/10
H3-LLT 3H 0.435 0.47 3070 UG LLT PE 0.1/10
H3-Tol 3H 0.582 0.64 470 Tol. + PPO G + DT 0.0/10
H3-UGQ (1–7) 3H 0.4–0.2 0.44–0.18 2600 UG PE 0.1/10
Fe55-UG 55Fe 0.280 0.48 13300 UG PE 0.1/10
Fe55-HF 55Fe 0.185 0.31 13700 HF PE 0.1/10
Ni63-UG 63Ni 0.760 0.75 1100 UG G + DT 0.1/10
C14-UG 14C 0.931 0.94 6300 UG G + DT 0.1/10

The studies of the time distributions were performed on seven LS-sources whose
composition is presented in Table 9.1. The vial type PE refers to Polyethylene vials and G
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+ DT to glass vials with a layer of diffusive tape. The last column shows the approximate
mass of the aqueous solution (mH2O) and the total mass of the scintillation cocktail
(mtot) The 3H and 63Ni sources were measured with a set of home-made optical gray
filters in order to perform the efficiency variation method (see Section 2.2) to select
the optimal kB parameter. The H3-UGQ sources are a set of seven 10 ml UltimaGold
LS-sources. The sources were quenched with an increasing weight of nitromethane,
from 0 mg to 70 mg.

The net time distribution of all channels for each measurement was obtained after
analysis of the list-mode data. The net time distribution refers to the time distributions
corrected for the contribution of accidental coincidences. The correction was made
automatically by the list_mode_analysis software after fitting the distribution in
the interval [2.5 µs, 3 µs] with a linear function. More information on the analysis of
list-mode data is given in Chapter 3.

The Monte Carlo code presented in Appendix A was used to gain a better under-
standing of the influence of the delayed component on the measured activity. The
performance of the code can be illustrated by fitting one of the experimental time
distributions. The D channel of the H3-UG source was chosen for this purpose. The ad-
justment of the parameters was done by the Nelder-Mead method [141]. The optimized
values for the parameters are shown in Table 9.2.

Parameter Value

λp 0.57 ph.e−/keV

λd 0.08 ph.e−/keV

τp 0.28 s−1

τd 0.09 s−1

σ 1.25 ns

kB 100 µm/MeV

Table 9.2: Optimal parameters obtained from
the Monte Carlo code for the H3-UG source. The
free parameters λd and λp are given in number
of photoelectrons per keV effective energy re-
leased in the cocktail (ph.e−/keV).

As a reference, the FOM obtained with the TDCR method for the same measurement
is λ = 0.68 ph.e−/keV. The ratio between the delayed and total (prompt + delayed)
fluorescence is 0.12. A similar ratio 0.14 was reported for DIN + PPO (1.5 g/l) cocktail
in the work of Lombardi et al. [17]. The experimental and simulated time interval
distributions are shown in Figure 9.1. It should be noted here, that the equation that
is used for the time dependence of the delayed fluorescence is only approximate.
Nevertheless, a good agreement between the experiment and simulation is observed.

9.2 results

The analysis of the data is structured in the following way: first, the coincidence
counting rates as a function of the used coincidence resolving time are obtained. They
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Figure 9.1: An example of the D time distribution of the H3-UG source and the Monte Carlo
generated distribution. The insert shows the same distributions in linear scale from 0 to 20 ns.

give information on what is the necessary coincidence window that needs to be used
in order to gather the bulk of true coincidences. All counting rates are corrected for
accidental coincidences. This procedure is done for each nuclide and cocktail. The data
was then used to calculate the activity of the samples according to the TDCR method for
counting rates at various coincidence windows. This allows the study of the influence
of the loss of true coincidences or the inclusion of delayed fluorescence events on the
calculated activity. The results were interpreted with the aid of Monte Carlo simulations
of TDCR measurements with the ability to separate prompt and delayed fluorescence
events. Finally, a comprehensive discussion on the results is given.

dependence of the counting rate on the resolving time As the activities
of the sources are more or less arbitrary, it is useful to scale all counting rates to the
rate at a particular coincidence window. Here it is assumed that above 1.5 µs the
contribution of true coincidences should be insignificant. As a conservative approach,
all counting rates were scaled to the counting rate at 2 µs and are presented as relative
counting rates. This coincidence window should be long enough to include all true
coincidences and thus, a comparison with that counting rate would give the fraction of
missed coincidences. The relative counting rate R is calculated as:

R =
ntrue
i (τ)

ntrue
i (2 µs)

−100% (9.1)

The relative counting rates in the D channels for the tritium sources are shown in
Figure 9.2. Figure 9.3 shows the same relationship, but for the D and T channels of
the 55Fe LS-sources. From the results it is clearly visible, that the commonly used 40 ns
coincidence resolving time would be insufficient for UltimaGold, UltimaGold LLT and
Toluene+PPO cocktails if measurements of 3H or 55Fe are performed. In these cases the
time that is needed to acquire 99.9% of true coincidences is close to 1 µs. The loss of
true coincidences is the largest for 55Fe in UltimaGold where 25% of T coincidences are
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missed at 40 ns coincidence window. A few important takeaways must be extracted
from these results:

• The loss of triple coincidences is larger than the loss of double coincidences.

• UltimaGold LLT has the most significant contribution of delayed events

• The 55Fe and 3H results with the same cocktail (UltimaGold) show that the
counting rate as a function of the coincidence window depends on the nuclide
and the energy spectrum.

• HionicFluor is the fastest tested cocktail, and it has the lowest contribution of
delayed events.

• If measurements of 3H and 55Fe are performed, the necessary resolving time to
gather 99.9% of true coincidences is close to 1 µs.

The first point is particularly important as it suggests that the T/D ratio also depends
on the used coincidence window. Thus, the loss of coincidences will not only decrease
the counting rate, but it may also skew the results from the application of the TDCR

method. As presented in Section 2.2, to calculate the detection efficiency, the TDCR

method relies on the triple to double coincidence ratios.
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Figure 9.2: Relative counting rate, compared to the counting rate at 2000 ns coincidence
resolving time. The grey box shows the region that is enlarged in the inlet graph.

For the higher energy nuclides 63Ni and 14C, the counting rate converges significantly
faster to the value at 2 µs. The relative counting rate as a function of the coincidence
window for these sources is presented in Figure 9.4. For 14C, a coincidence window of
100 ns is necessary to include 99.9% ofD and T events and for 63Ni source the necessary
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Figure 9.3: Relative counting rate in the D and T channels as a function of the coincidence
resolving time for the Fe55-UG and Fe55-HF sources.

time is 600 ns. Despite the higher detection efficiency for these sources, there is still
significant contribution of delayed fluorescence photons to the total counts.

Note that all measurements were performed without optical grey filters. Thus, the
achieved detection efficiency is the maximum for this detector. If filters are used, e. g.,
for the efficiency variation method, the decreased efficiency will lead to a larger spread
in the time distributions. Lowering the efficiency could also increase the contribution of
delayed fluorescence.

The results in this section show that the commonly used short resolving times are
insufficient to collect all true coincidences. However, increasing the coincidence window
too much could be undesirable due to the larger contribution of delayed fluorescence.
Moreover, it is possible that Birks’ ionization quenching formula does not properly
account for the delayed component. A solution could be found in selecting a coincidence
window that includes all prompt fluorescence, but still the contribution of delayed
fluorescence is negligible. The impediment is that it is not precisely known what is the
level of overlap between the delayed and prompt fluorescence, especially considering
that some singlet states could diffuse before interacting with a fluor molecule [7]. It
is thus important to also study the calculated activity with respect to the coincidence
window. It may give insight on the influence of the delayed fluorescence on TDCR

measurements.

dependence of the calculated activity on the coincidence resolving

time The list_mode_analysis program was used to get the T/AB, T/BC and T/AC
ratios at different coincidence windows, from 40 ns to 2 µs. The TDCR18 program,
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Figure 9.4: Relative counting rate of the D and T channels for the C14-UG and Ni63-UG sources.
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developed by Ph. Cassette, was used to calculate the activity. It is an updated version of
TDCR07 [93]. The updates include new data for more LS cocktails and also the option
to calculate the stopping power using the dataset published by Tan and Xia [94]. The
activity of the measured sources with respect to the coincidence window is shown in
Figure 9.5. The relative activity is calculated using (9.1).

The 3H sources have a similar behaviour at short coincidence windows as the cal-
culated activity decreases with decrease of the resolving time down to 30 ns. A sharp
increase in the calculated activity is seen for shorter coincidence resolving times. The
high overestimation for very short coincidence resolving times can be explained by the
higher loss of triple coincidences than double coincidences leading to a lower TDCR

and an underestimation in the efficiency. From the results in the previous section it
was shown that Toluene+PPO and UltimaGold have a significantly less pronounced
delayed scintillation component compared to UltimaGold LLT. Intuition suggests that
the dependence of the calculated activity on the coincidence resolving time would be
lower for cocktails exhibiting low amount of delayed fluorescence. The experiments
contradict this — the calculated activity of the H3-LLT source is less dependent on the
coincidence window than that for the H3-Tol and H3-UG sources. A possible explanation
for this behaviour is given in the next subsection.

Similar relationships to the 3H sources were observed for the other two pure-β
nuclides: 14C and 63Ni. The bias in the calculated activity of the C14-UG source is
less than 0.1% for all coincidence windows. The behaviour of the Ni63-UG source is
very similar to the 3H source in the same cocktail, however, the dependence on the
coincidence window is less pronounced.
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The electron-capture 55Fe behaves differently with change in the coincidence resolving
time. For the Fe55-HF source the difference from the reference activity is positive at all
coincidence windows. For Fe55-UG the function has a minimum at around 400 ns. The
increase for longer coincidence resolving times is significantly lower in comparison to
the 3H sources and could be due to statistical uncertainties.

studies of the activity as a function of the coincidence resolving time

using the monte carlo code The question raised in the previous experiments is
what is the possible influence of the delayed fluorescence on the activity calculated with
the TDCR method. Here, an advantage of the developed Monte Carlo code compared
to real measurements is that the method can be applied to data from a source with
precisely known activity. It also gives the possibility to have two separate scintillation
components: prompt fluorescence – described by the Birks equation, and delayed
fluorescence – presumably not subject to ionization quenching.

An initial step that is needed for the Monte Carlo code is to provide the parameters
of the measurement, the cocktail that is simulated, the radionuclide spectrum and the
activity. The initial parameters were set to the optimal parameters determined for the
H3-UG source (shown in Table 9.1). The standard deviation σ of the gaussian jitter was
set to zero to facilitate the interpretation of the results. The code was used to generate
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Figure 9.6: Dependence of the calculated activity on the coincidence resolving time for Monte
Carlo simulated measurements of 3H and 55Fe for various prompt scintillation component
decay times.

artificial data for 55Fe and 3H with different prompt scintillation component decay
times, keeping all other parameters unchanged. In one of the runs, the decay time was
set to 10 ps to separate the prompt from the delayed component, as the separation
between prompt events would not be larger than 1 ns. Thus, if such a coincidence
window is used, the effects of delayed fluorescence would be suppressed.

The results from the experiment are presented in Figure 9.6. Please note that in
the simulation code the prompt and delayed fluorescence time distributions overlap,
i. e., there is no coincidence resolving time that would include only prompt events
and no delayed events. That is due to the approximate equation used to describe the
delayed fluorescence decay time. Nevertheless, other studies [18, 142] report that an
overlap between the two is to be expected. The effect of the overlap between the two is
negligible for 1 ns coincidence window.

For 55Fe the activity with respect to the coincidence resolving time shows a consistent
downward trend which intersects the Monte Carlo input activity at a certain coincidence
window. Considering 10 ps prompt decay time simulation, the correct activity can be
reconstructed for very short coincidence resolving times due to the low overlap between
the prompt and delayed components. However, increasing the coincidence resolving
time leads to an underestimation of the activity. An effect most probably caused by the
detection of more delayed fluorescence events. For too short resolving times there is a
larger loss of T coincidences than D coincidences, leading to a lower TDCR value and
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lower estimate of the detection efficiency. This effect is seen as an overestimation of the
activity.

The same phenomenon was observed in the 3H simulations. Too short coincidence
window and a loss of prompt events leads to significant overestimation of the (T losses
are higher thanD losses). The difference from 55Fe is that the inclusion of delayed events
leads to the overestimation of the calculated activity. Note here, that the difference
between prompt and delayed events in the simulation is the lack of ionization quenching
for the latter. The only case where the calculated 3H activity does reach the Monte Carlo
reference value is for the 10 ps decay time measurement at 1 ns coincidence window.
For all other prompt decay times the calculated activity is overestimated by two or
more percent.

The calculated activity curves obtained from the simulations closely resemble the
results from the measurements with the digitizer (shown in Figure 9.5). After a dis-
cussion between the co-authors of [139], the following effects that lead to a bias in the
calculated activity were stipulated:

• unequal losses of double and triple coincidences for too short resolving times

• influence of the delayed scintillation component, which has different ionization
quenching properties

• difference in the free parameter (mean number of photoelectrons per keV absorbed
in the scintillator) for the prompt and the delayed scintillation

The first effect leads to activity overestimation in all cases, because short coincidence
windows lead to the loss of more triple than double coincidences. This in turn leads
to a decrease of the TDCR value and underestimation of the detection efficiency. The
second and third effects lead to activity underestimation in monoenergetic sources and
to overestimation in 3H.

The reason for the last bias effect is that the TDCR model considers only one free
parameter value. As the emission mechanism is different for the prompt and the delayed
fluorescence, however, it seems reasonable to think that the intrinsic light yields of
those two processes could be different. In the case of 55Fe the K-shell rearrangement
is the predominantly detected process. The emission is quasi-monoenergetic and thus
the correctness of the used ionization quenching function is less important. Then,
the observed dependence of the calculated activity on the coincidence window is not
explained by a different quenching behaviour of prompt and delayed emission. The
more probable reason is a difference in the intrinsic light yield of each scintillation
component.

From the Monte Carlo results it seems that for a monoenergetic source there is
a certain coincidence window that would result in the correct activity calculation.
Its width will depend on the prompt and delayed fluorescence decay times and the
relative contribution of the two. The 3H results indicate that all bias effects lead to an
overestimation and no coincidence window will lead to the correct activity calculation.
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Moreover, the difference between the minimum activity and the activity at very long
coincidence resolving times would appear lower the shorter the decay time of the
prompt fluorescence is. The same phenomenon was observed in the real measurements
of Toluene+PPO and UltimaGold LLT cocktails (see Figure 9.5). Toluene+PPO has a
faster prompt fluorescence than LLT, thus all the prompt fluorescence light is gathered
at shorter coincidence windows, lowering the contribution of delayed fluorescence.

9.2.1 Delayed fluorescence and the ionization quenching model

As discussed previously, the TDCR model relies on the proper description of the light
output of the scintillator with respect to the deposited energy. This is predominantly
done using Birks’ ionization quenching formula (1.12) [23, 27]. Thus, the TDCR model
has one external parameter, the kB, which should be specific to the used cocktail. The
equation of Birks was, however, proposed for the description of prompt fluorescence
only and it may not account correctly for the presence of delayed fluorescence. The
contribution of the delayed component to the total detected scintillation light depends
on the width of the used coincidence window. Thus, it is to be expected that the
perceived light output of the scintillator would be different for long and short resolving
times – the former including more delayed fluorescence light than the latter. This
could introduce a dependence of the value of the kB parameter that best describes the
scintillator light output on the used coincidence window.

The main way to determine the optimal kB parameter in TDCR measurements is by
the efficiency variation technique, which was described in Section 2.2. For the imple-
mentation of the technique, a source or a set of sources with the same specific activity
are measured, where all measurements are done at a different detection efficiency. A
commonly used way to vary the efficiency is with the use of grey filters. The optimal
kB parameter is the parameter that results in the same calculated activity at different
detection efficiencies.

optimal kB parameter and the coincidence window The efficiency varia-
tion technique was performed on three of the sources, H3-UG, H3-LLT and Ni63-UG, using
optical grey filters. The objective of this study was to determine if there is a dependence
on the obtained optimal kB parameter on the coincidence window used to make the
measurements. Each measurement of a source and filter was corrected for background
with the corresponding measurement of a blank sample. The off-line data for these
measurements was analyzed with the list_mode_analysis program in order to get the
counting rates as a function of the coincidence window. All measurements, including
blank measurements were corrected for accidental coincidences.

The activity of the samples are calculated for coincidence windows 20, 40, 60, 80, 200
and 1000 ns. The kB values that are used for calculation are from 70 µm/MeV to
160 µm/MeV with a 5 µm/MeV step. The kB value that is considered optimal is the kB
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Figure 9.7: Relative activity of the H3-LLT as a function of the TDCR value at the optimal kB
value for different coincidence resolving times. The kB value is given in units µm/MeV.

for which the slope of the linear fit of the activity as a function of the TDCR is closest to
zero.

For two of the sources, H3-UG and Ni63-UG, the optimal kB parameter does not seem
to depend significantly on the coincidence window. It was found out to be 100 µm/MeV
for all studied coincidence resolving times. For the H3-LLT source, however, such a
dependence was observed. The calculated activity, relative to the average of the values
for 1000 ns coincidence resolving time, as a function of the TDCR value for the studied
coincidence resolving times is shown in Figure 9.7. The kB parameter that results in
the smallest slope for 40 ns coincidence window is at 85 µm/MeV and for 1000 ns it is
115 µm/MeV.

Another source (H3-LLT2) from the same LLT cocktail and tritiated water solution was
prepared and measured on the RCTD1 [140] detector at LNHB. The PMTs of the counter
were directly connected to the nanoTDCR [101], a device dedicated to TDCR measurements.
The nanoTDCR is capable of simultaneous measurements with two different coincidence
windows which makes it a particularly suitable device to test the effect of the used
coincidence window time on the kB parameter. The H3-LLT2 source and its blank sample
were measured with a series of optical grey filters. All measurements were performed
simultaneously with coincidence windows 40 ns and 200 ns and 10 µs dead-time base
duration. The results of the experiment are shown in Figure 9.8. The measurements
of the H3-LLT2 source confirm the observed behaviour of the H3-LLT source. The kB
value that results in the smallest slope (fit shown with solid line) for 40 ns coincidence
resolving time is 90 µm/MeV and for 200 ns it is 120 µm/MeV. The wider coincidence
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resolving time also leads to a significant increase in the detection efficiency for all
measurements.

The results from the previous section imply that the delayed component in the
LLT cocktail is more pronounced compared to UltimaGold. This could explain why
increasing the coincidence window and including more delayed fluorescence photons
leads to some dependence of the optimal kB parameter. It is possible that it compensates
for some dependence of the calculated activity on the amount of detected delayed
fluorescence photons that are not included in the model.

Note here the large difference between the kB parameters obtained for H3-LLT at
20 ns and 40 ns coincidence resolving time (see Figure 9.7). That is the range that
should include a resolving time which is long enough not to miss prompt fluorescence
events, but short enough to minimize the contribution of delayed fluorescence. The
strong dependence of the optimal kB value and calculated activity in this range would
prevent the selection of such a coincidence resolving time. These results suggest that
UltimaGold LLT is unsuitable for standardization of 3H LS-samples with the TDCR

method using the Birks formula, due to its large delayed fluorescence contribution.

comparison of efficiency variation with gray filters and chemical

quenching Besides the use of grey filters, another common way to vary the de-
tection efficiency in TDCR is to use chemical quenching. The idea is to create a set
of sources with the same specific activities, but with increasing concentrations of a
quenching agent such as nitromethane. In the context of delayed fluorescence, the two
methods may not be identical. The grey filter absorbs light emitted from the vial and
thus affects both prompt and delayed fluorescence in the same way. Note that both
types of scintillation light are emitted from S1 excited states and have the same emission
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spectra. The chemical quenching is achieved by introducing chemical scavengers of
excited solvent molecules, which leads to a decrease in the light emission yield [80].
The quenching agent could affect the two types of scintillation light differently, thus
changing their relative contributions.

The influence of delayed fluorescence on the calculated activity with the two efficiency
variation methods was performed using a set of seven 3H in UltimaGold LS-sources with
added nitromethane (H3-UGQ in Table 9.1). The unquenched source was also measured
with a set of grey filters. All measurements were performed using the miniTDCR with the
CAEN DT5751 digitizer and the list_mode_analysis software. The coincidence resolving
time was set to 40 ns.

The results of the experiment are shown in Figure 9.9. In the left and right plots,
the highest efficiency data points are from the same measurements of the unquenched
sample. The left plot shows the experiments with chemical quenching and the right
with grey filters. The optimal kB value is 40 µm/MeV for the former and 100 µm/MeV
for the latter. It is interesting to note here that for TDCR values lower than 0.25 there is
an upward trend in the calculated activity when using chemical filters. This is contrary
to the downward trend observed for grey filters in the same range of TDCR values.

One possible explanation for the different behaviour of chemical quenching and grey
filters is that the added nitromethane does not quench delayed fluorescence in the same
manner as prompt fluorescence. A comparison of the time interval distributions with
grey filters and chemical quenching is shown in Figure 9.10. The solid black line is the
D time interval distribution of the unquenched H3-UGQ1 source. The dashed lines are
the distributions of the chemically quenched samples and the dash/dot lines are the
distributions of the unquenched sample with gray filters.
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The time interval distributions suggest that chemical quenching with nitromethane
does not affect delayed fluorescence significantly. The probability for events with more
than 20 ns time difference is higher compared to the unquenched sample. In the
first 10 ns the distributions of all chemically quenched samples closely resemble the
distribution of the unquenched sample. In the same time interval the distribution is
changed significantly if filters are used. Note the insert in Figure 9.10 which has linear
scale on the y axis.

When the total number of photons is reduced, the probability for the detection of
a delayed fluorescence photon increases. As an illustration, if the average number
of photons is high, then the primary events in each PMT would be prompt events as
delayed events are slower on average. If the average number of prompt fluorescence
photons is 1 or lower, then some delayed photons should be detected in order to have a
double or triple coincidence. Another effect of the reduction of the mean number of
photons is on the shape of the time distribution. When the number of detected photons
is reduced, the average time interval between two photons increases. This leads to a
decrease of the height of the distribution at ∆t = 0 as well as an increase in probability
in the tails. These effects are predicted by the theory presented in Chapter 5 and are
also clearly seen for the grey filter measurements in Figure 9.10. The latter effect should
be present also in the time interval distributions with chemical quenching. The fact that
the distribution is not significantly changed in the first few nanoseconds suggests that
nitromethane quenches prompt fluorescence predominantly.

From the theory of the scintillation process in organic materials there are two paths
that lead to energy transfer between the solvent and fluor molecules: non-radiative
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transfer to the fluor from an excited solvent molecule (Förster process) and diffusion
controlled non-radiative transfer [7]. The non-radiative transfer between solvent and
solute can be interrupted if the excited solvent molecule interacts with a molecule of
the quencher before reaching the fluor. Thus, solvent molecules that are excited in the
immediate vicinity of a fluor molecule would produce scintillation light promptly. If,
however, solvent molecules need to undergo diffusion before interacting with a fluor
molecule, then the probability for interaction with a quencher molecule increases with
time. Such process could possibly explain the reduced probability for events between 5
and 15 ns with nitromethane compared to grey filters.

The selective quenching of the prompt fluorescence by nitromethane would lead
to increased overestimation of activity for higher concentrations. This introduces a
dependence of the calculated activity from the detection efficiency which is compensated
by a lower kB parameter. Further studies are needed to quantify the magnitude of
the possible underestimation of the kB value when applying the efficiency variation
method with chemical quenching. Moreover, further studies on the prompt and delayed
components are necessary as well in regard to TDCR measurements.

9.3 the effect of delayed fluorescence on tdcr measurements

The results described in this chapter show that there could be a significant dependence
of the measured coincidence counting rates on the used coincidence resolving time.
The necessary coincidence resolving times in order to detect 99.9% of coincidences for
the studied LS-sources were found to be 700 ns for the 3H in UltimaGold source, 1 µs
for the 3H in UltimaGold LLT source and 1.2 µs for the 3H in Toluene+PPO source.
Both studied 55Fe sources also show a large time spread of the coincidences where for
the 55Fe in HionicFluor source the necessary coincidence resolving time is 300 ns and
for the same nuclide in UltimaGold cocktail it is 1.1 µs. The observed losses at short
coincidence resolving times for the studied 14C and 63Ni sources are lower than for
the other nuclides. The necessary coincidence resolving time to achieve a bias in the
coincidence counting rates lower than 0.1% is 100 ns for the 14C in UltimaGold source
and 600 ns for 63Ni in UltimaGold source.

The TDCR model for the calculation of detection efficiency seems to compensate well
for the large loss of coincidences at short coincidence resolving times, nevertheless, a
significant dependence of the calculated activity on the coincidence resolving time was
observed for 3H, 55Fe and 63Ni. A large overestimation of the calculated activity can be
observed for these nuclides at coincidence resolving times shorter than 20 ns. For the
pure-β sources, the relationship has a minimum between 15 ns and 30 ns.

The Monte Carlo code (see Appendix A) was used to simulate TDCR measurements
of 3H and 55Fe with assumptions of exponentially decaying prompt fluorescence and
delayed fluorescence that does not experience ionization quenching. The calculated
activity as a function of the coincidence window is very similar for simulated data and
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true measurements. For short coincidence resolving times the activity is overestimated
for both nuclides. This is explained with the larger loss of T coincidences compared
to D coincidences which leads to a lower TDCR and underestimation of the detection
efficiency. When delayed fluorescence is considered, there is a difference in the be-
haviour of the two nuclides. The calculated activity is underestimated in the case of
55Fe and overestimated in the case of 3H. This suggests that no coincidence resolving
time exists that results in the correct 3H activity calculation, as both bias effects (loss
of T and D and delayed fluorescence) lead to an overestimation. For the simulated
55Fe measurements a coincidence resolving time can be found for which the calculated
activity is equal to the true activity. It is difficult to be found in practice as it depends
on the prompt and delayed fluorescence decay time and their relative contribution.

The Monte Carlo studies indicate that, for 3H and nuclides with a similar spectrum,
the minimum calculated activity would be closest to the real one. Increasing the
coincidence resolving time beyond that which results in the minimum calculated
activity, would only introduce more delayed fluorescence photons and increase the
overestimation of the activity. However, if the delayed fluorescence is not negligible
in comparison with the prompt, then it is possible that even the minimum activity is
still significantly overestimated. Thus, it would seem that the use of LS cocktails that
exhibit lower delayed fluorescence contribution is preferable. In this regard, the TDCR

method could benefit if the chemists produce LS cocktails with enhanced prompt and
suppressed delayed scintillation components.

The efficiency variation method for obtaining the optimal kB parameter used in the
TDCR model was applied to two of the 3H sources and the 63Ni source. No dependence
of the optimal kB value on the used coincidence resolving time was observed for the
3H in UltimaGold and the 63Ni sources. A significant dependence was observed for
the 3H in UltimaGold LLT source; the kB value that leads to the smallest dependence
on the calculated activity from the TDCR value is 85 µm/MeV for 40 ns coincidence
resolving time and 115 µm/MeV for 1 µs coincidence resolving time. A similar source,
3H in UltimaGold LLT, was measured on a different TDCR counter with the nanoTDCR

device using its feature for simultaneous measurements with coincidence resolving
times 40 ns and 200 ns. The optimal kB parameter for the shorter coincidence resolving
time was found out to be 90 µm/MeV and for the longer one: 120 µm/MeV. These
experiments imply that if the delayed fluorescence contribution is significant, as is the
case for 3H in UltimaGold LLT, then efficiency variation could be an unreliable method
to determine the optimal kB parameter.

A set of 3H in UltimaGold LS-sources chemically quenched with different amounts of
nitromethane were measured to determine the optimal kB parameter. An unquenched
source from the set was measured also with a set of gray filters in order to compare
the kB parameters obtained by the two approaches. The kB parameter obtained from
chemical quenching is 40 µm/MeV and from gray filters is 100 µm/MeV. A possible
explanation for this discrepancy is that nitromethane quenches singlet states more so
than triplet states, thus increasing the relative contribution of the delayed fluorescence
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leading to a higher overestimation of activity. This introduces a dependence of the
calculated activity on the efficiency which is compensated by the kB parameter, being
the only adjustable parameter in the TDCR model. Thus, the kB parameter may not be
regarded as a property of the cocktail.

When it was observed that, for low-energy radionuclides, some real coincidences
are lost when a coincidence resolving time of 40 ns is used, it made sense to admit
that the coincidence resolving time must be extended to record the maximum number
of events. In fact, this is only a reasonable approach if the physics describing the
prompt and delayed emission is modelled in the TDCR calculation. A closer look at the
physics reveals that the ionization quenching phenomenon described by the Birks law
only concerns the prompt light emission. Moreover, due to the difference in the light
emission process, the intrinsic light yield of the scintillator and thus the figure of merit
used to calculate the detection efficiency is likely to be different for the two components.
This is also the case for the effects of the chemical quenching, which generally occurs
in LS sources because of the presence of oxygen.

From these considerations, four approaches could be used:

1. Use a short coincidence resolving time, in order to avoid a big influence of the
delayed light emission. A value of about 50 ns, close to the 40 ns used in the MAC3

module [100] seems to be a good compromise, but this value does not completely
suppress the effects of the delayed fluorescence and it should be noted that it is
only an approximation.

2. Use a newly developed or already existing LS cocktail that strongly diminishes
the undesirable influence of delayed fluorescence.

3. Include a model of the delayed fluorescence in the TDCR calculation. This would
include a term for the ionization quenching of T excited states, but also a kinetic
model of triplet annihilation reactions considering the initial spatial inhomogene-
ity and the molecular diffusion phenomena together with the energy transfer
mechanisms between the excited molecules. Of course, such a model would not
be straightforward and would involve more parameters than only the kB value
(e. g., kB for T states, diffusion coefficients, different figures of merit. . . ). These
parameters could not be determined from the TDCR value of a single counting
experiment and more characterisations would be needed, e. g., from pulses time
distributions.

4. Possibly the most satisfactory approach is to determine the light output of the
scintillator as a function of the deposited energy experimentally using the Comp-
ton coincidences method. This approach is described in Section 2.3 and new
developments towards it were made in the framework of this thesis (see Chap-
ter 10).

The findings from the quest for the optimal coincidence resolving time in TDCR

measurements are published in [143].
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A N E W C O M P T O N - T D C R S Y S T E M – F I R S T R E S U LT S

F
rom the results in Chapter 9 it was seen that the TDCR method may encounter
problems when there is a non-negligible presence of delayed fluorescence in
the detected scintillation light. This is likely so, because the used description of

the ionization quenching phenomenon, the equation proposed by Birks, holds well only
for the prompt fluorescence component. A few remedies to the problem are possible,
such as, using LS cocktails that exhibit little to no delayed fluorescence or changing Birks’
equation with a more complete model of the scintillation light. The former option seems
not to be available yet, and, moreover, the current trend of LS cocktail development is in
the direction of increasing delayed fluorescence contribution, as it enhances the pulse-
shape discrimination capabilities of the scintillator. The latter option would require
a much more complex model with a number of unknown parameters like the ratio
between delayed and prompt fluorescence as a function of the deposited energy, the
ionization quenching behaviour of delayed fluorescence and possibly others. Perhaps,
one of the best solutions is to forego the model for the light output as a function of the
deposited energy altogether and replace it with an experimentally obtained one. This
can be done using the Compton coincidences and TDCR (C-TDCR) method which was
proposed by Ph. Cassette and Phuc Do [97], following the work done by M. N. Péron
and Ph. Cassette in 1994 [95]. Its basics are described shortly in Section 2.3.

What is needed for the application of the C-TDCR method is a TDCR detector, a γ
detector with good spectroscopic capabilities and a monoenergetic γ-ray source. A
new such system was designed and developed at LNHB by B. Sabot and Ph. Cassette.
Regarding the electronics and the analysis algorithms, the detectors of the system
are connected to a CAEN digitizer and the analysis of the data is performed with
the list_mode_analysis software1. In this chapter, the characterization of the new
C-TDCR system is presented. It was also used for comparison between the C-TDCR and
existing activity measurement techniques. The application of the C-TDCR approach to
standardization of low-energy β emitters is discussed in the context of the observed
problems with the TDCR method.

10.1 design and setup of the system

The C-TDCR system consists of a miniature TDCR detector similar in design to detectors in
operation at ENEA2, Italy [135] and Sofia University, Bulgaria [104]. The counter consists

1 see Chapter 3 for more information on the software.
2 ENEA – The Italian National Agency for New Technologies, Energy and Sustainable Economic Develop-

ment

147



148 a new compton-tdcr system – first results

of three Hamamatsu R7200U-200 PMTs positioned in a plane with 120
◦ symmetry.

The PMTs are aimed at a standard 20 ml LS vial that contains the sample that is to be
measured. A CdTe X-ray detector sits between two of the PMTs, as close as possible to
the sample. An external 241Am source is located below the sample and is housed in a
lead shielding that has the possibility to rotate and move along one horizontal axis. A
sliced view of the detector is shown in Figure 10.1.

Figure 10.1: Sliced view of the C-TDCR detector. The red line shows the beam of the external
γ-ray source. The figure was kindly provided for use in this thesis by Benoît Sabot, (LNHB).

There are several important design considerations that are introduced in this system.
Firstly, the external source is placed below the scintillation vial. This ensures that the
symmetry that exists between the PMTs is preserved, i. e., there is no one PMT that would
be directly irradiated by the γ-rays of the source. The CdTe detector is placed as close
as possible to the LS vial which ensures high geometrical efficiency. Another feature
is the ability to change the position of the external source. By rotating the source, one
can change the angle between the collimated beam and the CdTe detector. This will
change the Compton scattering probability distribution with respect to the angle, e. g.,
at 90

◦ between the source and detector, the probability for the detection of 90
◦ Compton

interactions will be the highest and will fall rapidly for higher or lower angles.
The acquisition system of the C-TDCR detector is a CAEN DT5751 digitizer with four

10 bit channels and 1 GS/s sampling rate. The three PMTs of the TDCR system are
connected to the inputs of the digitizer through a fast amplifier. The CdTe detector is
connected to an Amptek PX2T-CdTe shaper and amplifier. The output of the shaper is
connected to the fourth channel of the digitizer. The digital pulse processing firmware
of the DT5751, however, is unable to process pulse-height information and can only
record the area of the integrated pulse. As the precise knowledge of the energy of the
scattered γ is critical for the C-TDCR method, a good energy calibration of the digitizer
is needed.

The CdTe detector as connected with the CAEN digitizer was calibrated with 15 lines
from four spectrometric point sources: 241Am, 133Ba, 129I and 55Fe. In each measurement
the source was placed in front of the CdTe detector at a 5 cm distance. The spectra were
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acquired until at least 104 events per peak were recorded. The centroid of each peak
was determined using the Colegram software developed and maintained at Laboratoire
National Henri Becquerel, France. The peaks were fitted with an exponentially modified
Gaussian with one left tail. A satisfactory fit was observed for each of the peaks. The
energy calibration can be seen in Figure 10.2. The data was fitted with a linear function
and the linearity of the detector is very good in the range from 0.6 keV to 60 keV.
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Figure 10.2: Energy calibration of the CdTe detector with four spectrometric point sources. An
excellent linearity of the detector response is observed.

10.1.1 Data analysis

For each measurement the CAEN digitizer outputs list-mode files that contain the time-
stamp and the deposited in the detector energy. The files are processed with the in-house
developed list_mode_analysis software. The code applies the common dead-time
logic with user-defined coincidence window and dead-time base duration. It outputs
the single and coincidence counting rates in all channels in coincidence with the γ
detector (AG, . . . , ABG, . . . , ABCG, DG) for each energy bin in the G channel. The
off-line data analysis and the developed code give the possibility to obtain the relative
light output of the scintillator as a function of the energy for arbitrarily long coincidence
resolving time and with a single measurement.

In order to obtain reasonably high counting rate in coincidence with the γ channel,
the activity of the external source and thus the counting rate in the LS has to be large. In
the present system the typical counting rates in the single LS channels is in the order of
5000 to 10000 s−1. It is thus necessary to perform corrections for accidental coincidences,
especially when studying long coincidence resolving times. The correction for accidental
coincidences in the presented studies was performed using the experimental method
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described in Chapter 8. The true counting rate N(i)
t (τ) in a coincidence channel i for

coincidence window τ is calculated as:

N
(i)
t (τ) = N

(i)
m (τ) −

(
N

(i)
m (2500 ns) −N(i)

m (2000 ns)
500 ns

)
τ, (10.1)

whereN(i)
m is the measured coincidence counting rate in channel i. The assumption here

is that above 2000 ns coincidence window the increase in counting rate with increase in
the coincidence window is due only to accidental coincidences. It is also assumed the
distribution of accidental coincidences can be approximated with a linear function.

The mean number of detected photons n̄ in a given PMT for a given energy E was
calculated using the equation derived in [97]:

n̄X(E) = −3 ln
(
1−

TG(E)

YZG(E)

)
,

X = (A,B,C), YZ = (AB,BC,AC), X 6= Y or Z. (10.2)

TG and YZG are the counting rates in the respective coincidence channels in coincidence
with the γ-detector at a certain energy E. Equation (10.2) holds for monoenergetic events,
so in practice a narrow energy gate must be used in the γ channel. If the width of the
energy gate is sufficiently small, equation (10.2) can be used. In the present studies the
width of a channel of the γ-detector is 270 eV, which will be considered narrow enough
in order to use the monoenergetic approximation. Another assumption that was made
in order to apply equation (10.2) is that the three PMTs of the detection system are
independent. This may not be the case when using clear glass vials, however, for all
presented studies, the used vials are PTFE coated PE vials which are diffusive and scatter
significantly the light emitted from the cocktail. The mean number of detected photons
in all three PMTs is the sum of the mean number of detected photons in each:

n̄ = n̄A + n̄B + n̄C. (10.3)

10.2 results with varying angles

The external source holder is designed in such a way as to allow translation along
a horizontal axis and rotation in order to change the angle between the source and
detector. By changing the angle it is possible to select the Compton electron energy that
would have the highest probability to be detected in the gamma channel. The spectra
in the CdTe detector without and with coincidences with the D channel of the TDCR

detector are shown in Figure 10.3 for two different angles between the beam of the
source and the CdTe detector. At 40

◦ the Compton peak is shifted towards the higher
energies thus there is a higher probability for low-energy Compton electrons in the
sample.

A possible problem in Compton coincidences systems is the increased asymmetry
of the PMTs due to one PMT being irradiated directly by the source. Such a bias could
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also occur if a larger part of the interactions in the LS happen near one side of the vial.
This would increase the detection probability of one or two PMTs at the expense of
the others. Both problems will depend highly on the position of the source compared
to the measured sample and on the angle between the source and the detector. In a
well-designed system the measured light output for a given energy should be the same
at different source positions and angles.

Figure 10.4 shows two measurements of the relative light output of the same Ul-
timaGold sample at two different angles between the source and detector. At 90

◦ the
external source is placed directly below the center of the vial. At 40

◦ it is located 1 cm off
the center and so the beam is kept in the middle of the vial. The light output obtained
with the two measurements agrees very well in the interval from 3 to 6 keV deposited
energy. The contribution of multiple Compton scattering events becomes large above
6 keV at 40

◦ as single Compton events will have small probability to enter the γ detector
at this angle. Similarly, below 3 keV, the probability for small angle scattering is much
lower for 90

◦ compared to 40
◦ and thus the divergence.
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The agreement between the results from the two measurement geometries is a good
indicator that the system is not biased towards a certain PMT. It also shows that the
calculations made with equations (10.2) and (10.3) and the assumptions associated
with them hold well event with significantly different energy spectra between the two
measurements (see Figure 10.3).

10.3 light output of commercial cocktails

The C-TDCR system was used to measure three commonly used commercial LS cocktails:
UltimaGold, UltimaGold LLT and HionicFluor. Measurements were made also on a
Toluene + PPO + POPOP cocktail. The amount of dissolved PPO is 3% w/V and the
POPOP is 0.015% w/V. The cocktails were used to prepare four 10 ml samples, one per
each cocktail, in PTFE3 coated polyethylene (PE) vials. The PE vials ensure good light
diffusion and the plastic has lower probability for interaction with γ-rays compared to
vials made of glass.
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The mean number of detected photoelectrons as a function of the deposited in the
cocktail energy is shown in Figure 10.5. The in-house made Toluene + PPO cocktail has
the largest light output of all measured samples. The light output of the HionicFluor
cocktail is significantly lower than the of the other samples. The curves of UltimaGold
and UltimaGold LLT are obtained as a combination of two measurements, one at 40

◦

and the other at 90
◦ between the source and detector, in order to increase the studied

energy range. For both samples the light output is very similar between 2 keV and
4 keV, but it increases faster for LLT than for UltimaGold with increasing deposited
energy. This indicates higher non-linearity for the UltimaGold LLT cocktail.

Overall the system can be used to obtain the relative light output of cocktails for
energies in the range from 2 keV to 7.5 keV. The Compton electron energies that lead to
less than one detected photo-electron on average cannot be studied due to the very low

3 Polytetrafluoroethylene – commonly known by the brand name Teflon
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counting rate in coincidences between the TDCR and γ detectors. For energies above
7.5–8 keV the contribution of double or multiple Compton scattering events becomes
significant. Nevertheless, this energy range is useful for studying the response of LS

cocktails for measurements of low-energy emitters such as 3H or 55Fe.

10.4 revisiting birks’ ionization quenching formula for the light

output

Birks’ semi-empirical ionization quenching formula is the most widely used equation
for the description of the non-linearity of organic scintillators. The relationship between
the light output of the scintillator L and the deposited energy E is given by:

Q(E) =
1

E

∫E
0

dE ′

1+ kB(dE ′/dx)
, (10.4)

where dE ′/dx is the stopping power of the electron for energy E ′ and kB is Birks’
ionization quenching factor which is specific to the cocktail and is measured in units
µm/MeV. The stopping power is calculated using the recommended equation from
the ICRU report №37 [25]. The mean number of detected photons (those producing
photoelectrons on the photocathodes of the PMTs) is then:

n̄(E) = ϕQ(E)E, (10.5)

where ϕ is called figure of merit (FOM) and is equal to the average number of detected
photons per keV effective energy released in the cocktail, i.e., after taking into account
the ionization quenching. It is expressed in units keV−1.

The FOM is a parameter that depends on the measurement geometry and the quantum
efficiency of the PMTs. The kB parameter depends only on the LS cocktail and should
be constant for different measurement conditions. Assuming that the Birks model is
applicable, it is interesting to fit equation (10.4) to the experimentally obtained light
output and to attempt to estimate the FOM and kB parameters. The challenge is that,
for a single measurement, both parameters are relatively highly correlated and thus the
uncertainty of the estimates is high. In order to reduce the correlation between the two
free parameters it is possible to make several measurements of the same sample but in
different measurement geometries. In the current study the geometry was varied by
placing optical grey filters between the LS vial and PMTs. This way, all the properties of
the cocktail are kept constant and only a change in the FOM should be observed.

All the LS samples were measured once without a grey filter and then with a grey filter.
The UltimaGold sample was measured with a second filter with 74% transparency. The
off-line analysis of the data was performed with 40 ns coincidence window and 20 µs
dead-time base duration. The results of the measurements are shown in Figure 10.6.
All measurements for each sample were fitted with equation (10.5) with a shared kB
parameter for all measurements without and with filters. The FOM parameters in each
measurement were free. The stopping power was calculated using the Bethe formula



154 a new compton-tdcr system – first results

0

1

2

3

4

5

−2

0

2

0

2

4

6

−2

0

2

0 2 4 6 8 10 0 2 4 6 8 10

M
ea

n
nu

m
be

r
of

ph
.e
−

UltimaGold

kB value: 195.8(4) µm/MeV
NF – FOM: 0.9875(15) keV−1

85% – FOM: 0.6118(15) keV−1

74% – FOM: 0.4264(12) keV−1
N

or
m

.r
es

.

reduced χ2 : 1.09

M
ea

n
nu

m
be

r
of

ph
.e
− UltimaGold LLT

kB value: 280.0(5) µm/MeV
NF – FOM: 1.2632(20) keV−1

85% – FOM: 0.8285(22) keV−1

N
or

m
.r

es
.

Deposited energy, keV

reduced χ2 : 1.26

HionicFluor

kB value: 217.8(6) µm/MeV
NF – FOM: 0.6947(16) keV−1

95% – FOM: 0.6354(20) keV−1

reduced χ2 : 1.13

Toluene + PPO
kB value: 250.0(8) µm/MeV
NF – FOM: 1.3601(40) keV−1

85% – FOM: 0.8619(30) keV−1

Deposited energy, keV

reduced χ2 : 1.94

Figure 10.6: Mean number of detected photoelectrons (ph.e−) as a function of the deposited
energy for four samples in different LS cocktails. The first measurements were performed
without optical filters (NF) and then the samples were measured again with optical grey filters.
The lines are Birks’ ionization quenching formula with parameters shown in the legend. The
normalized residuals are in units of standard deviations.

with data from Tan and Xia [94] for energies below 20 keV. The data for the composition
of the commercial cocktails was taken from [26].

Very good fits are obtained for the UltimaGold, UltimaGold LLT and HionicFluor
cocktails. The reduced χ2 statistic for these measurements is between 1.09 and 1.26. A
poor fit was observed for the Toluene + PPO sample (reduced χ2 = 1.94). It is possible
that the simple Birks equation does not hold for that cocktail leading to an apparent
dependence between the FOM and the kB. The kB parameters obtained from the fit
are in the range from 195 µm/MeV for UltimaGold to 280 µm/MeV for UltimaGold
LLT. It should be noted here, that the fix of a common kB parameter and fitting several
measurements with different detection efficiencies leads to a very low correlation
between the fit parameters and their precise determination.

The common practice to determine the kB parameter associated with a given cocktail
is to apply efficiency variation techniques [80], e.g., grey filters, chemical quenching
or PMT defocusing. The basis of the methods is to vary the detection efficiency and
calculate the activity of a sample for each measurement with different values of the
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kB parameter. The assumption is that the optimal value of kB will result in the same
calculated activity for each detection efficiency as discussed previously in Section 2.2.
The usual values of the kB parameter that are reported in the literature vary between
75 and 140 µm/MeV. There is a clear discrepancy between the results obtained in this
study and the commonly accepted kB parameters.
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Figure 10.7: Relative light output of UltimaGold LLT and HionicFluor for kB parameters fixed
from efficiency variation with grey filters.

In order to emphasize the discrepancy, Figure 10.7 shows the measurements of
the UltimaGold LLT and HionicFluor samples fitted with fixed kB parameters. The
parameters were obtained by the TDCR efficiency variation technique using the same
samples with added 100 µl of tritiated water. It should be noted that the results from the
efficiency variation are similar to what was obtained during past experiments and what
is commonly reported in the literature for these cocktails. While the HF fit is somewhat
satisfactory, the fit of the UltimaGold LLT data, with a fixed kB parameter 90 µm/MeV,
is poor. The results for the UltimaGold sample are similar to the UltimaGold LLT, but
are omitted from the figure as they significantly overlap with the UltimaGold LLT data.
Note that the lower kB parameters obtained from the efficiency variation lead to lower
than observed mean number of photoelectrons for energies between 6 keV and 8 keV.
This discrepancy cannot be explained by interference from double Compton events as
their effect is to reduce the detected light.

10.5 comparison between tdcr , cset and c-tdcr

All measured samples thus far are pure LS cocktails without radioactive sources. One
large advantage of the C-TDCR system is that it allows the measurement of the relative
light output of scintillators containing radionuclides, provided that they do not emit γ
or X-rays in the considered energy range. This is possible because the counting rates
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used to obtain the mean number of detected photons for a given deposited energy are
in coincidence with the γ-detector, thus pure β events will not interfere.

The main uncertainty, when measuring the activity of 3H LS-sources using the TDCR

method, comes from the used model of the light output of the scintillator. As it can be
directly measured using the C-TDCR system, the experimentally obtained mean number
of detected photons as a function of the deposited energy can be used instead of models
of the ionization quenching, as proposed first in [97] and later used in the ZoMBieS

method by Bignell et al. [98] The C-TDCR system can be used as a classical TDCR system
as well by removing the external γ-ray source. A third method for activity calculation
also exists when measurements with an external source are performed. The method is
called Compton Efficiency Tracing CSET and is described in detail in [97]. Thus, with
tho measurements with a single detection system it is possible to compare the three
activity calculation methods in exactly the same geometrical conditions. The digitizer
approach also allows the use of arbitrary coincidence resolving times and correlations
for accidental coincidences.

In order to perform the comparison a 3H LS-source was measured using the C-TDCR

system. The measured source is 3H in 10 ml UltimaGold cocktail in a PTFE coated plastic
vial. The source was measured for 48 hours using the CAEN digitizer and all events
were recorded in list-mode files. The counting rate in the single channels of the TDCR

is around 8000 cps and the counting rate in the CdTe detector in the whole spectrum
around 60 cps. This gives about 5 – 8 cps of useful events in the double coincidence
channels with the γ channel (ABG, BCG, ACG). There are in the order of 5× 104 useful
events per channel and the channel width is 270 eV. Just after this measurement the
same source was measured in the same detector with the external source removed and
placed in a lead shielding. The second measurement is 40 minutes long and was again
performed with the CAEN digitizer. With these two measurements we can estimate the
activity of the source using the three different methods:

• The classical TDCR method with Birks’ ionization quenching formula and a kB
parameter obtained from efficiency variation curves

• The Compton Efficiency Tracing method, which is similar to the CIEMAT/NIST
tracing but with several advantages

• The TDCR method, but using the light output of the scintillator that is obtained
experimentally using the C-TDCR system

10.5.1 TDCR method

In order to obtain the activity using the classical TDCR method, the measurement
of the source without the external source was analyzed. The list-mode files were
processed off-line with the common dead-time logic, same as in the commonly used
MAC3 module [100]. The coincidence window is 40 ns and the dead-time base duration
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20 µs. A blank sample with the same cocktail and in the same type of LS vial, but without
a radioactive source was also measured in the system in order to subtract background
counting rates. The T/AB, T/BC and T/AC ratios were used as an input to the TDCR18

code to obtain the detection efficiency and activity of the source as a function of the kB
parameter. The TDCR18 program is an updated version of TDCR07 [93]. The updates
include the data for more LS cocktails and also the option to calculate the stopping
power using the dataset published by Tan and Xia [94]. The optimal kB parameter was
estimated at 100 µm/MeV from efficiency variation with grey filters.

It should be noted here that a previous study revealed that 40 ns coincidence resolving
time is insufficient to collect all true coincidences for UltimaGold cocktails [105]. In the
study it was also observed that the activity calculated using the TDCR method depends
on the choice of resolving time. Despite the loss of coincidences for short coincidence
windows, the study concludes that the use of 40 ns is still a good compromise if Birks’
ionization quenching formula is used.

10.5.2 CSET method

In order to obtain the activity of the source using the CSET method we followed the
method described in the article of Cassette and Do [97]. The events in the γ detector
corresponding to Compton electron energies between 3.5 keV and 7.5 keV are considered
to be purely single Compton scattering events. Below 3.5 keV deposited energy there
could be influence of the 59.54 keV peak of 241Am and there are a low number of
events at 90

◦ between the source and detector. Above 8 keV we begin to observe the
effect of the multiple Compton scattering and thus the 7.5 keV upper limit is taken
conservatively. The CSET method for detection efficiency calculation is the following:

• From all recorded events in the TDCR channels, only those are considered which
are in coincidence with the γ channel in the range which corresponds to Compton
electron energies between 3.5 keV and 7.5 keV.

• The spectrum in the γ channel within this range is regarded as a spectrum of a
virtual source that is created in the LS cocktail.

• The TDCR counting logic is applied to the events which are in coincidence with
the γ channel and fall within the specified energy range. The result is the ABG,
BCG, ACG, DG and TG counting rates.

• The TDCR18 code is used with the experimental spectrum and the obtained
TG/ABG, TG/BCG, TG/ACG ratios to calculate the FOM.

• The FOM is calculated for a set of kB parameters from 70 to 200 µm/MeV.

• A classical TDCR measurement of the 3H source without the external γ source
is performed and the double coincidences efficiency for each kB parameter is
calculated by using the FOMs predetermined from the previous step.
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By using the CSET method the dependence of the calculated activity on the kB
parameter is significantly reduced. A possible explanation for this effect is given in the
original article [97] and it states that it is probably due to the fact that Birks’ formula
is used twice: once to calculate the FOM in the measurement of the virtual source and
a second time to calculate the detection efficiency of the classical TDCR measurement,
thus some of the unknowns in the ionization quenching are cancelled.

10.5.3 TDCR with experimentally obtained light output
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Figure 10.8: Light output of the 3H LS-source approximated with several models: Cubic polyno-
mial as used by Bignell et al.[98], linear fit with linear extrapolation to zero below 3.5 keV, Birks’
ionization quenching formula and a modified Birks equation with a fraction r that does not
experience ionization quenching. The measurement is done with 200 ns coincidence window.

The experimentally obtained light output of the scintillator can be used instead of
equation (10.5) with optimized FOM and kB parameters. This approach was proposed by
Bignell et al. and is described in [98]. The original setup used a 51Cr source as external
monoenergetic source. The system allows the study of energies between 5 keV and
40 keV and was used to determine the activity of a 63Ni source (66.98 keV maximum β

spectrum energy). The response of the scintillator for energies lower than 5 keV and
higher than 40 keV must be extrapolated from the available data, which does not lead to
significant uncertainties in the case of 63Ni, but would be unsuitable for measurement
of low energy nuclides such as 3H and 55Fe.

The system presented here allows the study of scintillator non-linearity in the range
of energies from 3 keV to 7.5 keV which encompasses a significant part of the 3H β

spectrum and the 55Fe emissions. It was used for the determination of the relative
light output of a 3H in UltimaGold LS-source. The mean number of photons as a
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function of the deposited energy is shown in Figure 10.8. Previous studies of the
distribution of scintillation events from 3H in UltimaGold samples show that 40 ns
coincidence window is insufficient to collect all true coincidences [105], thus a 200 ns
coincidence resolving time was chosen for this study. The choice of this coincidence
window is a compromise between the loss of true coincidences and the influence of
accidental coincidences. It should be noted here that for the Compton measurements
the accidental coincidences are not at all negligible. For example, for 200 ns resolving
time the accidental coincidences are 1.7% of the TG counting rate and 0.7% of the DG
counting rate. Corrections for accidental coincidences in all channels were performed
using equation (10.1).

Tritium has 18.64 keV maximum energy of the β spectrum, thus it is necessary to
extrapolate the experimentally obtained light output above 7.5 keV and below 3 keV. As
activity measurements of 3H are very sensitive to the model describing the scintillator
non-linearity it is important to choose a good model and access the uncertainties
associated with that choice. Four different models were chosen to describe the light
output of the LS-source: sum of two linear models, a cubic polynomial as used by
Bignell et al. in [98], Birks’ ionization quenching formula and a modified Birks equation
with a term accounting for delayed fluorescence.

The sum of two linear models consists of a linear function fitted to the experimental
data points between 4 keV and 7.5 keV. As this function gives less than zero photons
for zero deposited energy it is cut at 3.5 keV and is connected to the point (0, 0) with
another linear function. The rationale behind this model is to be as simple as possible.
If using Birks’ equation as a reference, the linear model will underestimate the light
output of high energy events and will give a lower boundary for the detection efficiency.
On the other hand, the cubic model was already used to describe light output of a
liquid scintillator. As seen from Figure 10.8 it seems to overestimate the light output of
events above 8 keV and thus can be used as an upper limit of the estimated detection
efficiency.

The modified Birks equation Bmod(E, r) is proposed in the framework of this thesis.
It accounts for a fraction r of the scintillation light that does not experience ionization
quenching and is given by:

Bmod(E, r) = ϕ ((1− r)Q(E)E+ rE) . (10.6)

Such a modification to Birks’ formula may be necessary as the latter was proposed by
Birks as a description of the prompt fluorescence only. Delayed fluorescence could expe-
rience little to no ionization quenching [7]. For some scintillators delayed fluorescence
could have non-negligible contribution in the order of 10 – 15%[7, 17]. This contribution
should increase with the coincidence resolving time [105].

The uncertainty of the measurement was taken as the standard deviation of a uniform
distribution with a lower boundary defined by the linear model and an upper boundary
defined by the cubic model. The relative uncertainty of the measurement, considering
only the dispersion of results with the different models, is 0.7% at k = 1.
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Figure 10.9: Activity of a 3H in UltimaGold LS-source calculated using the three methods. The
optimal value for the kB parameter 100 µm/MeV was obtained by efficiency variation using
grey filters on the same source.

10.5.4 Comparison and discussion

The results for the calculated activity of the LS-source using the three methods is
shown in Figure 10.9. All activities are relative to the one obtained by the C-TDCR

method using the experimental light output, which is 1976 Bq. The comparison with
this method should be the closest to knowing the true activity of the source as there
are no assumptions for the cocktail composition, ionization quenching parameters and
FOM. The activity calculation is however dependent on the extrapolations below 3 keV
and above 7.5 keV. This range encloses 50% of the spectrum of 3H.

There are a few interesting features that can be noted from this study. The CSET

obtained activity is much less dependent on the choice of the kB parameter than the
classical TDCR method. Both the CSET and TDCR methods give the same activity value
if the kB is chosen to be 140 µm/MeV. The activity at this point is 1% lower than
the activity obtained by the C-TDCR method. The results seem to agree well with the
hypothesis given in [105]. There, from the Monte Carlo simulations it is shown that
if there is some contribution of scintillation light that does not experience ionization
quenching the TDCR method would overestimate the activity for the true kB parameter.
In the Monte Carlo simulation the true kB parameter is the one selected by the user. In
this case if we assume that the fit of the light output could give the real kB parameter
(200 µm/MeV), then the classical TDCR would overestimate the activity by approximately
2% This is similar to what was reported from the Monte Carlo simulation in the article.
Another observation is that the usually chosen kB parameter could be underestimated.
Such an underestimation could occur due to problems with the efficiency variation
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technique. That is, when changing the detection efficiency, if there is more than one
scintillation component present, then it is possible to change the ratio between the
components. As the TDCR model assumes only one scintillation component following
the Birks light output equation, a bias in the calculated activity could be introduced.
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A P P L I C AT I O N S O F T H E T D C R M E T H O D AT T H E M I L
L A B O R AT O RY AT S U

T
his chapter presents the validation of the TDCR system developed and operated

at Sofia University through a participation in an international key comparison
of 3H activity measurements organized by the BIPM. It is also concerned with

the validation of the nanoTDCR, a TDCR acquisition device developed by the labZY
company. The chapter also describes shortly some of the practical applications of the
TDCR technique for the purposes of the studies performed at the “Metrology of Ionizing
Radiation” laboratory at Sofia University (MIL), namely the standardization of 222Rn
activity.

A TDCR counter has been developed in the Faculty of Physics of Sofia University. The
counter, called TDCR-SU, is an in-house built detector with three PMTs, whose purpose
is to perform primary measurements of activity of liquid scintillation samples at the
MIL laboratory and thus to provide reference sources for the calibration of the other
LS instruments used in the laboratory. The performance of the TDCR-SU detector was
validated by comparisons with the French primary TDCR counter at LNHB. These studies
were done before the research in this thesis, and are described in detail in [104].

11.1 standardization of pure beta-emitters using the nanotdcr

An important part of the TDCR-SU detector is the nanoTDCR device. At the time of
development of the TDCR-SU detector, the nanoTDCR device was brand new, and one of
the first produced units was purchased to be used at Sofia University. Due to this, the
nanoTDCR required extensive validation of its performance. The validity of the nanoTDCR

device was tested, within the scope of the thesis, by comparisons with the widely
used MAC3 TDCR acquisition module. The studies were performed in partnership and
collaboration with the labZY company and with LNHB.

The possibility to use the nanoTDCR acquisition system for TDCR activity standard-
ization of pure β-emitters was demonstrated by comparisons with the MAC3 module.
For the purpose of this study, the logical outputs of the three channels of RCTD1 were
connected to the inputs of the MAC3 and nanoTDCR. The experimental setup was used
for measurements of 3H and 90Sr/90Y in UltimaGold cocktails.

The results of the comparison demonstrate excellent agreement between the MAC3

and nanoTDCR units, and are shown in the work of Jordanov et al. [101]. The comparison
shows that the nanoTDCR system has excellent metrological capabilities, and can be used
within the TDCR-SU system for the standardization of radionuclides.

163
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11.2 validation of tdcr-su in the ccri(ii)-k2 h-3 key comparison 2018

In 2018 a key comparison of the measurement of the activity concentration of a tritiated
water solution was organized by the LNHB under the patronage of the Consultative
Committee for Ionizing Radiation (CCRI from the French Comité Consultatif pour les
Rayons Ionisants), part of the BIPM. The purpose of key comparisons is to measure the
degree of equivalence of national standards, and are usually multiyear efforts, where a
pilot laboratory finds a suitable transfer standard, circulates it between participants, pro-
cesses data, and writes a comparison report that is posted on the BIPM key comparison
data base [144].

The 3H2O solution was sent to ten national metrology institutes1, and to the MIL

laboratory. All the participating laboratories used the TDCR method to measure the
specific activity of the solution. At our laboratory, we have used the TDCR-SU detector
for the measurements, which serves as a validation of the capabilities of the system
to perform 3H activity measurements that are consistent with laboratories around the
world.

It should be mentioned here, that 3H was chosen because it is a good tracer of
nuclear activity, thus it is widely monitored. Moreover, it is also used as a tracer for
the implementation of the CNET method, and it is widely used for quality control in
LS counters [34]. The mean energy of the β-spectrum of 3H is low (5.6 keV), and it is
difficult to measure by LS counting due to the low detection efficiency that is usually
achieved. Therefore, if there are problems present with a given TDCR detector, they will
be the best visible when measuring 3H.

The tritiated water sample provided by the LNHB was used to make ten LS samples.
Half of the samples are with UltimaGold cocktail and the other half with UltimaGold
LLT cocktail. All samples contain roughly 7 µl of tritiated water and 10 ml cocktail.
Two blank samples were made in the same manner as the others, but with distilled and
deionized water instead of 3H2O.

The samples and blanks were measured on the TDCR-SU detector. Each sample
was measured once, where the measurement consists of eleven one-hour repetitions.
The blank samples were measured in the same way, with one measurement of the
corresponding blank for each sample. For example, the first 3H in UltimaGold sample
was measured for 11 hours (eleven repetitions, one hour each). The distilled water
in UltimaGold sample was also measured in the same way after. The first repetition
of each measurement is discarded. This is done, because it is possible to excite the
PMTs with ambient light when opening the optical chamber to place the sample in the
detector. This could increase the single counting rate in the first repetition and lead to
accidental coincidences.2

1 CENTIS (Cuba), CIEMAT (Spain), ENEA (Italy), IRA-METAS (Switzerland), LNE-LNHB (France), NIM
(China), NPl (UK), NRC (Canada), POLATOM (Poland), PTB (Germany)

2 The corrections for accidental coincidences developed in this thesis were not yet available at the time of
the experiments.
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The activity of the 3H sample was calculated for each repetition. To do so it is neces-
sary to obtain the net (background corrected) double and tripple counting rates nnet.
This was done by subtracting the blank counting rate b in a given coincidence channel
for each repetition i from the corresponding repetition from the sample measurement
nmeas:

nXnet,i =
nXmeas,i

bXi
, (11.1)

where X denotes the coincidence channel AB, BC, AC, D or T . The triple to double
coincidences ratios, T/AB, T/BC, T/AC and T/D, are calculated from the net counting
rates for each repetition. The TDCR07c code [93] was then used to calculate the activity
for each repetition, and the activity of the source is taken as the average of the activities
calculated for the ten repetitions. The kB parameter that was used for the samples
measured in UltimaGold was determined by the efficiency variation technique (see
Section 2.2) performed with a set of 3D printed mesh filters. The mesh filters are
described in detail in [145]. The same method was used for the UltimaGold LLT
samples. The optimal kB parameter for UltimaGold was found to be 130 µm/MeV and
for UltimaGold LLT 100 µm/MeV.

Table 11.1: Uncertainty budget of the activity measurement.

Source of uncertainty
Relative standard

uncertainty, %

Counting rates 0.06

Weighing 0.05

Dead time 0.05

Blank 0.14

Resolving time 0.32

kB parameter 0.60

Sample variability 0.09

Final value 0.69

The final result for the activity of the sample was determined from the average
value from all measured samples, and is 52.68(36) kBq/g (reference date: 1

st February
2018. The relative standard uncertainty is 0.69%. The uncertainty budget is shown in
Table 11.1.

The final result was submitted to the laboratory organizing the intercomparison
(LNHB), that compiles the reports from all participants. The results were published
in [34]. The final conclusion from the intercomparison is that the results from all
laboratories are compatible, within the reported uncertainties, and that the values of
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the arithmetic mean, the weighted mean, the power-moderated mean and the median
are very consistent [34]. The key comparison reference value is 53.16(13) kBq/g. This is
consistent with the specific activity determined at the MIL laboratory using the TDCR-SU

detector. The successful participation of the laboratory in the BIPM key comparison
shows that the TDCR-SU detector, and the TDCR analysis methods employed at the MIL

laboratory are comparable to the methods used in the leading metrology institutes for
measurements of the activity of tritiated water.

11.3 primary activity standardization of rn-222 using tdcr counting

Radon is a radioactive noble gas without stable isotopes. Measurements and stan-
dardization of the activity of 222Rn are of practical interest because it poses a risk to
human health as it can be accumulated in people’s homes and, when inhaled, it and its
short-lived progeny damage the lungs. 222Rn is the second leading cause of lung cancer
in the world [146, 147]. Therefore, accurate measurements of the activity of 222Rn, and
the metrological assurance of these measurements, are necessary.

The calibration of LS counting instruments for 222Rn measurements is typically
performed with standardized 226Ra solutions. However, this type of calibration is prone
to errors as, with the ageing of the solution, there is a build-up of 210Pb, which interferes
with the measurements of the LS sample and is difficult to account for [148]. For this
reason the TDCR method was chosen as a method to prepare reference sources for 222Rn
calibration in the MIL laboratory.

222Rn is produced by the decay of 226Ra and in turn decays with a half-life of
3.8232(8) days through a decay chain containing two α−emitters (218Po and 214Po and
two β−emitters (214Bi and 214Pb) to 210Pb which has a much longer half-life (22.2 years).
Due to the relatively long half-life of 210Pb, 222Rn reaches equilibrium with its short-
lived progeny after a period of around five hours. The activity of 210Pb is negligible
during the first few days after the production of 222Rn.

The standardization of 222Rn by TDCR counting was proposed and developed by Ph.
Cassette et al. in 2006 [74]. The method is based on the measurement of a LS sample
containing 222Rn in equilibrium with its short-lived daughter products. Due to its very
short half-life of 165 µs, 214Po can decay during the dead-time of the detector [74]. This
will result in a reduced detection efficiency for that radionuclide. The counting rate,
calculated for the live time of the detector and taking into account the correction for
decays of 214Po during the effective dead-time of the detector τeff, is [74]:

R =εRn222SRn222ARn222 + εPo218SPo218APo218 + εPb214SPb214APb214+

εBi214SBi214ABi214 + εPo214SPo214APo214e
λτeff ,

(11.2)

where ε are the detection efficiencies of the radionuclides which are, 100%for the
α−emitters and nearly 100%for the high-energy β−emitters, S are the corresponding
emission probabilities, which are practically 100%for all nuclides in the chain, and A
are the activities of 222Rn and its daughter products. As the imposed dead-time in
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TDCR measurements is of the extending type, the effective dead-time of the detector is
considered as the average of the dead-times imposed after the decay of 214Bi, including
extensions from sporadic signals or uncorrelated decays. Note that it is an open research
question whether or not τeff should be used in equation (11.2), or the dead-time base
duration should be used instead. If we take into account also the relations between
the activity of 222Rn and activities of its daughters after they reach secular equilibrium,
which according to the Bateman equations are [149]:

APo218
ARn222

= 1.000558;
APb214
ARn222

= 1.00547;
ABi214
ARn222

= 1.00910;
APo214
ARn222

= 1.00910

(11.3)

Equation (11.2) can be written as:

R = ARn222
(
1.0091εBi214 + 1.00545εPb214 + 2.000558+ 1.0091eλτeff

)
(11.4)

The efficiencies of the high-energy β−emitters, εPo−214 and εBi−214 , can be calculated
with the TDCR model using their respective energy spectra. The proper choice of kB
value is insignificant, because the detection efficiencies are very close to 100%and can
be chosen in the middle of the range of possible kB values for the used cocktail. By
far, of the largest importance to the correct calculation of the activity of 222Rn is the
correction for 214Po, decaying during the effective dead-time of the detector τeff [74].

The practical realization of these calculations is done by a computer program devel-
oped by Ph. Cassette. The program assumes that τeff is equal to the dead-time base
duration and the kB parameter is equal to 100 µm/MeV. The program requires the β
spectra of 214Bi and 214Po, the TDCR parameter of the measurement and the dead-time
base duration as inputs, and it outputs the detection efficiency for 222Rn. The software
was used in the 222Rn measurements described hereafter.

11.4 validation of tdcr-su for primary activity measurements of radon

in water

The TDCR-SU detector has been validated for primary activity measurements of the
activity of 222Rn in water through participation in two international intercomparisons.
These will be described hereafter.

jrc international intercomparison A large scale Europe-wide proficiency
test (REM 2018 PT) on the determination of the specific activity of 222Rn in drinking wa-
ter was organized by the Joint Research Centre (JRC) of the European Commission. The
101 participating environmental radioactivity monitoring laboratories were either nomi-
nated by their corresponding national authorities or invited by JRC to participate [150].
The MIL laboratory was also invited to participate.

The proficiency test consists of the determination of the specific activity of 222Rn
in a water sample that is sent out by JRC. The water sample is a 1 l bottle containing
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Austrian natural spring water. Ten LS sources were made from the water sample in order
to perform LS counting measurements of the 222Rn activity. The water was sampled
with a large 60 ml syringe attached to a hose that allows sampling from the bottom
of the 1 l bottle. The sampling was performed immediately after the first opening of
the bottle. When the bottle is opened the 222Rn that is close to the water surface starts
to diffuse into the above air, and thus the sampling of the bottom is necessary. After
filling the 60 ml syringe, the attached hose was replaced with a needle and the contents
of the syringe were distributed to five LS vials that were already filled with 10 ml of
UltimaGold LLT cocktail. Eight milliliters of the water were discharged on the bottom
of each LS cocktail filled vial. Again, this is done to prevent 222Rn diffusion in the
surrounding air. The LS vials were then filled to the brim with UltimaGold LLT. Thus,
a homogeneous system is achieved – 222Rn containing water that is fully dissolved in
a liquid scintillator. Special precautions were taken in order to avoid the forming of
air bubbles in the samples. A total of ten LS samples were prepared this way. Some
samples in a LS vial were also prepared that contain only water, i. e., a sample with
20 ml 222Rn water and no LS cocktail.

After the preparation of all 222Rn containing samples, a pump was used to pump
clean air in the water remaining in the 1 l bottle. This is done in order to evacuate the
radon gas. The remaining radon-free water was used to prepare blank samples that
serve as background correction. The use of the same water is important as it can be
checked if it contains radium, uranium or other radionuclides that can interfere with
the 222Rn LS measurements. This also ensures that the cocktail-water mixture is the
same as in the 222Rn samples.

The prepared LS samples were measured on a RackBeta 1219 LS spectrometer. The
samples have a relatively low activity and cannot be measured directly on the TDCR-SU

detector, as it does not have passive shielding and has a high background counting rate
that would interfere. In the RackBeta detector, the sample and the PMTs are contained
in a lead box, therefore significantly decreasing the background counting rate. The
RackBeta spectrometer is not a primary measurement device and it requires calibration.
It was calibrated using a standardized 222Rn-in-water LS sample. The standardization of
the LS sample was performed with the TDCR-SU detector. The LS sample was prepared
using the water remaining in the 1 l bottle. The water was exposed to air with high
222Rn concentration and the radon gas diffuses into the water. A radon-in-water source
with relatively high activity concentration can be produced in this way. The newly
produced radon containing water was used to prepare a sample to be measured on the
TDCR system.

The sample was measured on the TDCR-SU and its activity was estimated using the
method outlined above using the radon activity calculation code by Ph. Cassette. The
specific activity of 222Rn in the sample was measured at 9.672(48) Bq/g. This sample
was measured on the RackBeta for calibration. The detection efficiency of the RackBeta
spectrometer for 222Rn and its progeny is 4.999(22). Note that the maximum achievable
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detection efficiency is 5.012 as there are on average 4.012 decays of short-lived daughter
nuclides for every 222Rn decay.

The final value for the specific activity of 222Rn in the spring water samples is
273.4(91) Bq/kg with a coverage factor k = 1. The reference 222Rn specific activity value
in the REM 2018 proficiency test samples with it combined uncertainty with a coverage
factor k = 1 is Aref = 318(16) Bq/kg. The final reported result of our laboratory falls
within the acceptance range set by the organizers of the intercomparison which is
Aref ± 20% [150]. Thus, the participation of the MIL laboratory was deemed successful.

After the end of the proficiency test, it was found out that a small amount of 222Rn
activity was caught in the hose attached to the syringe during the sampling of the 1 l
spring water bottle. This in part explains the discrepancy between our reported result
and Aref. Another source of discrepancy is that Aref is calculated as the average of many
reported values, where some measurements were performed with HPGe detectors. A
problem may occur if the HPGe detector is calibrated for efficiency with a uniform
source, and the calibration factor is then used on the 222Rn-in-water measurements. Even
though 222Rn itself is uniformly distributed in a water sample, its daughter products
are heavy metals that can easily attach on the glass surface of the bottle. Thus, if the
source is measured close to the HPGe detector it cannot be readily assumed to be a
uniform activity source.

irsn international intercomparison A proficiency test for the measurement
of 222Rn in water samples was organized by the Environmental Analysis and Metrology
Department of the French radiation protection and nuclear safety institute (IRSN).
Twenty laboratories (twelve French and eight foreign laboratories) took part in the test,
including the MIL laboratory. The results reported by the laboratories are collected by
the IRSN, compared to the reference values, statistically studied and distributed to
participating laboratories, to ASN (French Radiation & Nuclear Safety Authority) and
to the members of the French accreditation committee for environmental radioactivity
measurement [151].

The test items are 1.2 l aluminum flasks with polypropylene screw cap and aluminum
cap seal, filled to the brim with water spiked with radon under laboratory conditions.
In order to measure the specific activity of 222Rn in the water samples a similar method
was used as in the previous proficiency test. An important difference is that this time the
plastic syringe with a plastic hose was replaced with a glass syringe with a wide metallic
needle. This prevents unwanted 222Rn absorption and loss of activity when sampling.
A total of eight water samples, 10 ml each, were taken from the 1.2 l aluminum flask.
The water was carefully transferred below the surface of UltimaGold LLT LS cocktail in
20 ml high performance glass vials. The water and cocktail were mixed by vigorous
shaking by hand. The LS samples were measured on a RackBeta 1219 LS counting
spectrometer. The spectrometer was calibrated using one of the samples whose activity
was certified by the TDCR-SU detector. The blank samples were prepared in the same
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way as for the previous proficiency test, i. e., using the same water from the test item
after bubbling for enough time to evacuate the 222Rn.

The standardization of the sources was done by primary activity measurements on the
TDCR-SU detector and the new TDCR-LNHB-SU detector. One of the sources was measured
on the TDCR-SU and the other on the TDCR-LNHB-SU. The latter detector is very similar
to TDCR-SU and uses the same model of PMTs. The only differences are in the designs
of the optical chambers and the construction material – polytetrafluoroethylene (PTFE,
commercial name: Teflon) in the TDCR-SU and polylactic acid (PLA) in the TDCR-LNHB-SU.

The specific activity of 222Rn in the two LS sources measured in the two detectors
are 0.660(7) Bq/g for the source in the TDCR-SU and 0.656(7) Bq/g for the source in
the TDCR-LNHB-SU. There is an excellent agreement between the two detectors within
the estimated uncertainties. The difference between the two specific activities is 0.54%.
Thus, the new TDCR-LNHB-SU detector is shown to be equivalent to the TDCR-SU for the
standardization of the activity of 222Rn in water LS sources.

The final reported value by the MIL laboratory for the specific activity of the profi-
ciency test water sample is 666± 40 Bq/l with a coverage factor k = 2. The assigned
value of the proficiency test is established at 677± 55 Bq/l [151]. There is an excel-
lent agreement between the official assigned value and the result obtained at the MIL

laboratory.
The successful participation in both proficiency tests affirms that the calibration,

sampling and measurement techniques at the MIL laboratory at Sofia University provide
accurate and unbiased estimates of the 222Rn-in-water activity concentration.

11.5 measurement of the partition coefficient of rn-222 in polymers

The ability of some polymers like polypropylene [152], polyethylene [153], polystyre-
ne [154], polycarbonates [155], plastic scintillators [149] and others to absorb radionu-
clide noble gases was shown recently. This property allows for some materials to be
used as radon samplers that dissolve in a liquid scintillator and can be measured
by LS counting. Moreover, plastic scintillators could be used for direct scintillation
measurements of 222Rn activity. Also, most of the passive or active devices used for
radon and thoron (220Rn) measurements are sensitive to both isotopes [156]. To discrim-
inate between the two they typically use a diffusion barrier or are packed in polymer
bags. Thus, a proper description of the process of diffusion of the radon gas through
a polymer barrier or into a plastic scintilla cor is needed. The sorption and desorp-
tion of radioactive noble gases in polymers is described adequately by the diffusion
equation [155]. Two parameters are needed in order to model the behavior of 222Rn
in the material – the diffusion length, i. e., the mean distance that a 222Rn atom passes
through the polymer before decaying, and the partition coefficient, i. e., the ratio of
the concentration of the gas on the surface of the polymer to the concentration of the
gas in the surrounding medium. With these two parameters it is possible to describe
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the behavior of 222Rn and 220Rn for arbitrary size of the polymer for which they are
determined, arbitrary activity concentration in the external medium and for arbitrary
sorption and desorption durations.

To determine the diffusion length and the partition coefficient of 222Rn in a given
polymer, a several hundred micrometers thick sample of the material is prepared. The
sample is then placed in a chamber with air containing 222Rn with a known activity
concentration. In order to determine the diffusion length, the sample is left to desorb in
radon free air and the activity concentration of 222Rn that is still inside is monitored in
time [157]. In order to determine the partition coefficient it is necessary to determine the
activity of 222Rn that is contained inside the polymer just after it is removed from the
radon containing atmosphere. A good way to measure the activity of radon in polymer
samples is by dissolving them in a liquid scintillator and performing LS counting
measurements.

The partition coefficients and diffusion lengths of 222Rn in some polymers3 at dif-
ferent temperatures were measured in the MIL laboratory. One of the experiments
was dedicated to the estimation of the counting efficiency of the RackBeta 1219 LS

spectrometer for LS counting of Makrofol N in a Toluene + PPO cocktail. In order to
do this calibration, a foil was exposed to radon; then, it was dissolved in the toluene
cocktail and measured on the RackBeta and on the TDCR-SU detector. The detection
efficiency for 222Rn of the RackBeta was estimated as the ratio of the counting rate of
the LS counter and the TDCR-determined activity in the vial. The obtained value was
4.946(29) and was used further for the determination of the activity that was absorbed
in the polymers. The results for the partition coefficients and diffusion length of the
polymers are given in [156]. From practical point of view, the TDCR-SU detector appears
to be an excellent reference instrument for the calibration of LS instruments for the
measurement of the activity of 222Rn sources.

3 polypropylene, low-density polyethylene, low-density polyethylene with antislip coating, high density
polyethylene, Makrofol N, Makrofol DE and Makrofol DE for compact disks
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S
ummary The main focus in the third part of the thesis falls on the studies of

the applications of the time distribution of scintillations, and digital list-mode
acquisition in general, to radionuclide metrology using LS counting.

Chapter 7 explores the possibility for precise measurements of short half-lives of
nuclear isomeric states using LS counting. The half-lives of two excited nuclear states in
57Fe and one in 237Np were measured by means of LS-LS and LS-γ coincidences. The
half-life of the 59.54 keV level of 237Np obtained by LS-γ coincidences is 67.60(25) ns,
which is in good agreement with already published decay data. The measured half-
life of the 14.4 keV level of 57Fe is 97.9(3) ns which is consistent with some of the
published results, however a significant discrepancy exist between the values found in
the literature. The half-life of the shorter-lived 136.47 keV level of 57Fe was measured
also by LS-LS coincidences and the result is 8.78(4) ns. The result is consistent with the
published data and comes with a significant improvement in the uncertainty.

The studies presented in Chapter 7 show that liquid scintillation fast timing mea-
surements can be a useful tool to refine some already known decay times. The LS-LS

coincidences method could allow more precise studies of half-lives of excited states
of short-lived nuclides, where long measurements are difficult to perform. It could be
valuable also when measuring isotopes in liquid phase. The studies show that LS-LS

coincidences could be used for precise measurements of half-lives as short as 8 ns.
Off-line analysis of TDCR measurements allowed the development of an experimental

method to evaluate the counting rate of accidental coincidences. These studies were
central to the derivation of a set of analytical equations that can be used to evaluate
random coincidences in any existing TDCR counter. The analytical method developed
in this thesis was adapted in the extended international reference system for pure
β-emitting radionuclides operated by the BIPM [158].

In Chapter 9 it is shown that both the detected coincidences and the TDCR estimated
activities depend significantly on the choice of coincidence window. This dependence
is attributed to the unequal loss of double and triple coincidences as well as to the
different ionization quenching properties of the delayed scintillation component. Studies
of Monte Carlo generated data shows that if the used cocktail has a non-negligible
delayed fluorescence contribution, then, even for short coincidence resolving times,
the activity of a low energy β-emitter would be overestimated. Despite the developed
corrections for accidental coincidences in TDCR counting, the obtained results show that
it is not yet advisable to use longer coincidence resolving times in TDCR measurements
of low energy β-emitters. A primary method, different from the TDCR method, would
be needed to measure the activity of a sample, so as to have a reference value. A good
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candidate for such a method is the Compton coincidences and TDCR method discussed
in Chapter 10.

The characterization and first results with a new C-TDCR system are shown in Chap-
ter 10. The detector was designed in such a way as to allow changing the angle between
the external source and the detector, thus changing the useful energy range of Compton
electrons. An excellent agreement between the experimentally obtained scintillation
response at 40

◦ and at 90
◦. This is a good indication that the system is not biased

towards a certain PMT. The system was used to measure the light output as a function
of deposited energy for three commercial cocktails – UltimaGold, UltimaGold LLT and
HionicFluor, and a home-made Toluene + PPO cocktail. The response of the cocktails
was approximated with Birks’ ionization quenching formula and a good agreement
was observed. The measurements were made also with a set of grey filters, which
allows to fix the kB parameter in the ionization quenching function more precisely. The
results, however, lead to a much larger kB parameter than is commonly used in the
TDCR method and what is found by the efficiency variation technique.

The C-TDCR system was also used to perform a comparison between three primary
activity measurement methods – TDCR, CSET and C-TDCR. The activity obtained by
the C-TDCR method was evaluated with four different assumptions for the function
describing non-linearity of the light output of the scintillator in order to estimate the
uncertainty on the calculated detection efficiency. The comparison between the three
methods shows a large discrepancy between the TDCR activity at the kB parameter found
by efficiency variation with grey filters and the C-TDCR activity. The results confirm the
expectations laid out in Chapter 9, that the kB parameter could be underestimated by
the efficiency variation technique due to the influence of the delayed fluorescence.

Chapter 11 summarizes some applications of the TDCR method for calibration and
quality assurance of the activity measurements performed in the MIL laboratory at Sofia
University.
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I
n conclusion, the cross-correlation distribution, that describes the time inter-
vals between the first detected events in each PMT within a given coincidence
window, has been derived. The feasibility of using the derived theoretical

model to fit experimental cross-correlation distributions and extract information about
the FOM was evaluated. The preliminary results show that, if the decay constant of the
scintillator is known, it would be possible to calculate the FOM and, from there, the ac-
tivity of the sample. This constitutes a new approach at primary activity measurements
using LS counting.

Perhaps the largest contribution of the thesis to radionuclide metrology using the
TDCR method are the derived corrections for accidental coincidences. They can be used
in any existing TDCR LS system that reports the single and coincidence counting rates.
The corrections allow the measurement of radioactive sources with high activity, which
can be encountered when performing in situ measurements of medical radioisotopes.
Removing the influence of accidental coincidences gives the possibility to use long
coincidence resolving times and study the time dependence of delayed fluorescence,
which was shown to have a non-negligible effect on the TDCR calculated activity.

The studies of the influence of the coincidence window on TDCR measurements
showed that, for some LS cocktails, there is a significant dependence of the calculated
activity on the resolving time. Moreover, as the influence of delayed fluorescence
depends also on the detection efficiency, the efficiency variation technique was shown
to be potentially unreliable to determine the kB parameter of the ionization quenching
function. This was emphasized by a discrepancy that was observed between the kb
parameters obtained with efficiency variation with grey filters, as well as with chemical
quenching.

As a possible solution to the problems related to the uncertainties regarding the light
output of the scintillator, a Compton coincidences and TDCR system was investigated.
It was shown that the non-linearity of the scintillator response can be studied in the
interval between 2 keV and 8 keV energy of Compton electrons. The light output of
several commercial scintillation cocktails was obtained and the optimal kB parameters
in all cases were significantly higher that what is usually used in TDCR measurements.
This indicates that conventional TDCR measurements of low-energy emitters such as 3H
and 55Fe could underestimate the activity of the sample by as much as two or three
percent. Perhaps, the accuracy of the standardization of low-energy emitters can be
improved by the use of the Compton coincidences and TDCR technique.
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Within this work, it was shown that LS counting and off-line data analysis can be
useful tools for the study of half-lives of nuclear excited states as short as 8 ns. The
half-lives of the long-lived excited states in 57Fe and 237Np were measured by LS-LS

coincidences with 0.4% uncertainty.

Some applications of the TDCR method for calibration and quality assurance of the
activity measurements performed in the MIL laboratory at Sofia University were shown.

A program called list_mode_analysis was developed to analyze CAEN digitizer
data, and it was used throughout the thesis. A Monte Carlo code to simulate the timing
of detected scintillation events in a three-PMT detector was also developed. The code
was used to validate a theoretical model of the timing of the prompt fluorescence. A
fast software for the calculation of the model was developed in order to be able to fit
the equations to real-world data.

contributions to new knowledge in the field of activity measure-
ments using ls counting

• Methods for the evaluation of accidental coincidence counting rates in TDCR

measurements were proposed for the first time [P1].

• The cross-correlation distribution of the time intervals between detected scintilla-
tion events was derived, and it was shown how it can be used to determine the
detection efficiency and activity of the sample [P2].

contributions to methodical aspects in the field of ls counting

• The effect of the delayed fluorescence on the activity calculated using the TDCR

method has been demonstrated [P3].

• A comparison of two counting algorithms for TDCR measurements has been per-
formed [P4]. The comparison demonstrates their advantages and disadvantages.

• The possibility to use digitized LS measurements for the precise determination of
the half-life of some excited nuclear states has been demonstrated [P5].

• A software for the analysis of digitizer data has been developed. It has ap-
plications for TDCR measurements, cross-correlation measurements and C-TDCR

measurements.

• A Monte Carlo code has been developed that gives the possibility to simulate the
time interval distribution and the number of detected scintillation events in LS

measurements.
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A
A M O N T E C A R L O C O D E F O R T H E S I M U L AT I O N O F L S
M E A S U R E M E N T S

In order to gain more insight on the nature of the time distribution between photons in
a LS measurement, a Monte Carlo simulation code was developed. The main influence
to design the software is the Monte Carlo code for TDCR measurements developed by K.
Mitev, which was used in chapters 4 and 8. It uses already measured time distributions
as an input from which the timing of events in a TDCR detector are sampled. The aim
of the newly developed code is rather to simulate the timing of events with as few as
possible fundamental parameters and models describing the system. It is capable of
accurate simulations of the number and time properties of detected photons created in
a two or three PMT detection system. The code was written in the Rust programming
language which is a systems programming language, similar to C++, but with improved
memory safety. It was chosen because it is fast and strongly typed. Another benefit is
the ease with which parallel code can be written.

a.1 code basics

The code assumes that for each decay there are two types of scintillation light that
could be emitted from the scintillation cocktail: prompt and delayed fluorescence. The
photons of the prompt fluorescence are assumed to follow an exponential distribution
with decay time τp:

Pp(t) = τpe
−τpt, (A.1)

where Pp(t) is the probability to observe a prompt photon at time t. This assumption
will be good for cocktails with a short rise time of the scintillation light, which is con-
trolled by the non-radiative transfer between the solvent and the primary fluorophore.
The sampling from exponential distribution is done using the inverse transform method.
The delayed fluorescence is more complex and will be discussed in the following section.

a.1.1 Modeling the delayed component

In practice the delayed fluorescence intensity has a complex dependence on time as
it is controlled by the diffusion of triplet states. A comprehensive description of the
dependence of delayed fluorescence intensity with time is given in the work of King
and Voltz [19]. It is also described briefly in subsection 1.1.1. Due to the large number
of unknown parameters, there is a difficulty in comparing the proposed equation with
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real data. It was therefore not used in this study and an approximate equation for
the time dependence of delayed fluorescence was utilized instead. The approximate
equation is also proposed by King and Voltz and is derived in the same paper [19]. The
simplified equation is:

Pd(t) =
τd

4(1+ τdt)
3
2

, (A.2)

where Pd(t) is the probability to observe a delayed fluorescence photon at time t and
τd is the delayed fluorescence decay time. Note that, with this equation the probability
for delayed fluorescence does not go to zero at t = 0 as expected. Delayed fluorescence
is produced by interaction of two triplet states yielding a singlet emission and should
have some non-negligible rise time [18]. Thus, the used simplified equation could lead
to increased probabilities for delayed events in the first nanoseconds after a decay.
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Figure A.1: Distribution of the time between two PMTs for two 3H measurements, with and
without filter. The black line represents the fit with equation (A.2). The graph is in log-log scale
so that the delayed component is better visible.

Due to the approximations and general uncertainties regarding the delayed fluores-
cence component it is interesting to use the simplified model to fit real data. Consider
the time distribution between the primary events in two PMTs that is for times longer
than 100 ns. It should be expected with a high probability that, for such long delays, the
photon giving the stop signal is a delayed photon. The start trigger could be either from
prompt or a delayed photon, but it should be a good approximation to consider that the
first photon is prompt, as in general there are not many detected delayed photons. As
the typical decay time of the prompt photons is in the order of 3 ns it could be expected
that almost all prompt photons arrive in the first ten nanoseconds after the decay. Thus,
as time differences of more than 100 ns are considered, the time distribution of the first
photon can be considered a δ function. The long tailing of the distribution of the time
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between photons in two PMTs in this case should be modeled as the cross-correlation
between a δ function and the probability density function of delayed fluorescence given
by equation (A.2), which is equal to the probability density function of the delayed
fluorescence only. In short, the simplified model should describe the time distribution
after a long enough time that the distribution of prompt fluorescence can be deemed
negligible.

In Figure A.1 two measurements of 3H with and without a filter are shown. The time
distributions are fitted using equation (A.2). A very good agreement between the data
and the model can be observed after time differences larger than 50 ns.

In the Monte Carlo code, the sampling from the delayed fluorescence distribution is
done by the inverse transform method. The inverse of equation (A.2) is:

X =
(1− 2R)−2 − 1

λd
, (A.3)

where R is a uniformly distributed random number in the interval [0, 1], λd is the decay
constant of delayed fluorescence, and X has the probability distribution of the delayed
component.

a.1.2 Ionization quenching in the Monte Carlo code

In order to calculate the number of detected photons from the energy deposited in the
cocktail, the Monte Carlo code uses the free parameter model described in [2, 3]. The
scintillator non-linearity is accounted for using Birks’ ionization quenching formula [7]:

Q(E) =
1

E

∫E
0

dE

1+ kB(dE/dx)
, (A.4)

where dE/dx is the electron stopping power for the given cocktail parameters and kB
is the Birks parameter. The semi-empirical ionization quenching formula describes the
prompt fluorescence intensity as a function of the deposited in the scintillator energy.
Note that, the intensity of delayed fluorescence has been reported to have less or even
no dependence on the deposited energy [7]. Thus ionization quenching was considered
only for prompt fluorescence.

a.2 input of the code

The input currently is given as command line arguments to the executable code. The
parameters which are given to the code are:

• Number of Monte Carlo runs

• Prompt fluorescence FOM in units photoelectrons per keV

• Delayed fluorescence FOM in units photoelectrons per keV
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• Prompt fluorescence decay constant in units s-1

• Delayed fluorescence decay constant in units s-1

• Gaussian jitter standard deviation in units ns

• Relative efficiencies of the PMTs

• Spectrum file with two columns: energy in eV and probability

a.2.1 Simulation

After the code is started it reads the spectrum file and the effective energy (after
ionization quenching is taken into account) is calculated and stored into a list for quick
access later. The flow of the MC simulation is the following:

1. An energy E is sampled from the spectrum of the nuclide, as provided by the
BetaShape code [107, 108].

2. The average number of prompt fluorescence photons for the sampled energy E is
calculated as:

n̄p = EQ(E)ϕp, (A.5)

where ϕp is the free parameter measured in photoelectrons per keV effective
energy released in the cocktail.

3. The average number of the delayed fluorescence photons for the sampled energy
E is calculated as:

n̄d = Eϕd, (A.6)

where ϕd is the free parameter for the delayed fluorescence.

4. The number of delayed fluorescence photons nd and the number of prompt fluo-
rescence photons np for the current decay are sampled from Poisson distributions
with averages n̄d and n̄p, respectively.

5. The timestamps of each of the prompt and delayed photons is sampled from the
appropriate distribution, equations (A.1) and (A.2) respectively. The PMT that was
hit is sampled from a uniform distribution, where the parts are the relative PMT

efficiencies.

6. The detected photons are sorted according to their timestamp and the primary
event in each PMT is identified.

7. A value is sampled from Gaussian distribution with mean µ and standard de-
viation σ for each of the three channels and is added to the timestamps of the
primary events. The purpose of this step is to model the time jitter introduced by
the detection system in the timing of the events.
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8. The timestamps of the primary events are saved in list-mode files (one for each PMT

channel), similar to the comma-separated values files produced by a CAEN digitizer,
i. e., one entry per line containing the timestamp of the event in picoseconds after
the start.

9. The time to the next decay is sampled from an exponential distribution with the
decay time of the simulated nuclide as a parameter.

10. The loop returns to step one and the steps are repeated until the number of
requested decays is reached.

The list-mode files produced by the Monte Carlo code can later be analyzed by the
same list_mode_analysis software used for the CAEN digitizer files. A short summary
of the code is presented in Chapter 3.

a.3 comparing the monte carlo code to real data

Studies on two LS sources have been performed, in order to compare the Monte Carlo
simulation to real measurements. The sources are 3H and 14C in a Toluene + PPO
cocktail. The measurements were performed on a three-PMT LS detector connected to a
CAEN DT5751 digitizer. The list-mode files were analyzed with the dedicated software
to obtain the distribution of the time differences between PMTs A and B.
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Figure A.2: Comparison between the Monte Carlo simulation and a real measurement of 3H.
The data in green is a Monte Carlo simulation of the prompt component only.
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In order to compare the simulation and real 3H measurements, the Monte Carlo code
was used to generate artificial data with various input parameters. Both the Monte Carlo
and real measurement data were visualized on the same graph, and the parameters
of the simulation were varied until a satisfactory agreement was reached. The optimal
parameters of the code that produced the best agreement between the two sets of data
are: FOM equal to 1.0 ph.e-/keV for the prompt fluorescence and to 0.25 ph.e-/keV for
the delayed fluorescence, 2.5 ns prompt decay constant, 10 ns delayed decay constant
and 1.2 ns standard deviation of the gaussian jitter. The optimal Monte Carlo simulation
and the real data are shown in Figure A.2. Another artificial set of data was produced
with the same parameters, but with a FOM of the delayed fluorescence equal to zero,
i. e., removing its contribution. It is interesting to note that for 3H it seems that all the
signals that come after 20 ns are due to the delayed fluorescence.
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Figure A.3: Comparison between the Monte Carlo simulation and a real measurement of 14C.

The same comparison was done for the 14C source. The Monte Carlo parameters
were optimized manually until the following was reached: FOM equal to 0.7 ph.e-/keV
for the prompt fluorescence and to 0.25 ph.e-/keV for the delayed fluorescence, 3.0 ns
prompt decay constant, 10 ns delayed decay constant and 0.8 ns standard deviation of
the gaussian jitter. In fact, the only difference with the 3H source is a slightly lower
gaussian time jitter and prompt FOM, and a longer prompt decay constant. The optimal
parameters found for 3H and 14C seem reasonable and do not contradict with what we
have seen in practice thus far.
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a.4 discussion on the monte carlo code

The main purpose of the Monte Carlo code is to provide artificial data with exactly
known physics and parameters. It was used to test the ability of the TDCR model to
reconstruct the input activity under various conditions, e. g., changing the ratio of
delayed and prompt fluorescence. The results from this study are shown in Chapter 9.
The code was also used to validate a theoretical derivation that aims to describe the
prompt fluorescence time distribution analytically.





B
C O D E F O R T H E C A L C U L AT I O N O F T H E C R O S S - C O R R E L AT I O N
E Q U AT I O N

The cross-correlation equation consists of a sum of two exponentially modified gaussian
distributions summed through a cascade of a binomial distribution, Poisson distribution
and the nuclide spectrum. In order to use the cross-correlation distribution to fit real
data, equation (5.2) has to be calculated for a number of different times from −20. . .−30
to 20. . . 30 ns with a step of 0.1. . . 1 ns. The fitting would also require the evaluation
of the analytical equation for different parameters which could easily go to ≈ 1000
iterations for a single fit. Such calculations require the use of a fast computer program.

One such computer program was developed in the Rust programming language. Due
to the complexity of the cross-correlation distribution, without any optimizations, one
calculation of the equations takes 10 – 20 seconds for 3H and more than a minute for
14C on a relatively powerful laptop with Intel i7-7700HQ 3.8 GHz 4-physical/8-logical
core processor. In order to calculate the distribution in a reasonable time, however, the
code must be optimized to increase the execution speed.

b.1 optimization of the code

The first optimization that was done was to parallelize the computer code. To output
the whole distribution, i. e., the distribution in a set of points from ∆t = ∆tmin to
∆t = ∆tmax, the code has to calculate equation (5.34) for each ∆t with a given step. As
the individual calculations are independant, it is relatively straightforward to parallelize
the calculations. The total bins in which the cross-correlation distribution is to be
calculated are distributed among a number of threads and each thread calculates the
value of equation (5.2) and stores the value in an array – one element per bin. At the
end of the execution the arrays from all threads are combined into one and the total
distribution is given. On the same laptop, the parallel code reduces the execution time
by a factor of 8. It is important to note that no information is lost by the parallelization
and thus this optimization comes “for free”.

The next possible time reduction can be made in the poissonian sum. As the sum in
the Poisson distribution goes to infinity, the calculation has to be cut short somewhere.
In order to see where would be the optimal trade-off between the execution time and
producing the correct time distribution, tests with different cut-offs of the terms in the
sum were performed. The meaning of the cut-off is to skip all calculations for which the
Poisson coefficient is less than a given value, e. g., 10−10, 10−6, 10−3, 10−2, etc. To test
the optimal cut-off, the time distributions of 3H and 63Ni were calculated for different
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cut-offs. The 3H results are shown in Figure B.1. The figure on the left shows the whole
range of the distribution in log-scale.
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Figure B.1: Calculation of the analytical equation at different cut-offs of the infinite sum of the
Poisson distribution. The figure on the left is the calculated distribution in log-scale. On the
right the same distributions are shown, emphasizing the vicinity of the peak.

No obvious difference between cut-offs from 10−12 to 10−2 can be seen. Zooming
near the peak shows that at 10−2 a discrepancy can be seen, however, all other points
are well grouped together. The best acuracy compared to the execution time seems to
be at a cut-off of 10−3. The results for 63Ni are very similar and not shown here. With
these settings the calculation of a typical 3H distribution takes about 0.8 s to finish
and for 63Ni -– 5.3 s. The improvement with this optimization is already around 20×
compared to the non-optimized parallel code, but still needs to be better to be practical.

The other possibility to reduce the computation time is to reduce the resolution of
the spectrum input file. Thus far, the spectra that have been used are provided by the
BetaShape program [107, 108]. The resolution of the output of the program is such
that the spectrum is divided in around 320 bins. In order to simplify the spectrum a
small program was developed that takes the BetaShape spectrum and divides into a
given number of variable sized bins. The bin size is proportional to the derivative of
the function in that region. The value in the bin, assigned to the center of the bin, is the
average value of the BetaShape spectrum within the bin. A few examples with different
number of bins are shown in Figure B.2 where the simplified spectrum is shown in
orange and the original 3H spectrum with blue. An extreme case with only 8 bins can
be seen on the bottom.

The idea behind is to keep as much information from the original spectrum as
possible. By using variable sized bins the spectrum will be discribed better where it
changes rapidly. In order to test the optimal trade-off between execution speed and
the number of bins in the spectrum, simplified spectra with 5 to 312 (the maximum
number) bins were generated. The analytical equation was calculated with all different
spectra to see the influence of the number of bins on the shape of the distribution. The



bibliography 207

0 20 40 60

Energy, keV

0.00

0.01

0.02

0.03

0.04

Pr
ob

ab
ili

ty

0 20 40 60

Energy, keV

0.00

0.01

0.02

0.03

0.04

Pr
ob

ab
ili

ty

0 20 40 60

Energy, keV

0.00

0.01

0.02

0.03

0.04

Pr
ob

ab
ili

ty

Figure B.2: Re-binning of the spectrum of 63Ni into a smaller number of variable sized bins.
The original spectrum (blue) has 320 bins. The resulting spectra with reduced number of bins
are shown in orange as follows: top left – 100 bins, top right – 20 bins, bottom – 8 bins.

tests were performed with 3H and 63Ni spectra and were done for −40 to 40 ns time
distribution and 30 ps bin size. No optimizations on the Poisson cut-off were used, i. e.,
the cut-off is 10−12.

Some of the results for 3H are shown in Figure B.3. The left subfigure shows the
entire time distribution and the right subfigure shows a zoom in on the peak area.
The spectrum with 20 bins seems to be the optimal as it overlaps with the reference
spectrum with 312 bins. Similar results were obtained for 63Ni. The execution time
decreases from 4 s for the original spectrum to 0.3 s for 20 bins, a reduction of 12. For
63Ni the execution time decreases from 72 s to 1.7 s.

The final optimizations of the code that calculates equation 5.2 are: 10−4 cut-off of
the Poisson sum and a simplified spectrum with 20 variable size bins. One calculation
of a 3H time distribution from −40 to 40 ns with 0.1 ns bin size takes approximately
0.09 seconds. The same calculation for 63Ni requires 0.32 seconds. These final values
are acceptable for the use of the code for fitting experimental spectra. The final version
of the code including the stated optimizations will be referred to as xcorr_calc.
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Figure B.3: Effect of the re-binning of the spectrum of 3H on the shape of the time distribution.
The spectrum with 312 bins was used as a reference. On the left figure, where the total
distribution is shown, all distributions overlap. The difference is more visible if the peak area is
zoomed (right).

b.2 fitting a monte carlo generated distribution

The analytical equations and Monte Carlo were compared with using exactly the same
parameters in both. Thus far, the agreement between the two has been exceptional. In a
more realistic scenario, the optimized xcorr_calc code has to be used, however, due
to its faster execution time. Despite that the accuracy of the calculation was always kept
in mind when optimizing the code, it is possible that some discrepancy was introduced
in comparison with the Monte Carlo code. This was checked by comparison between
the optimized xcorr_calc and the Monte Carlo, which is described hereafter.

The Monte Carlo code was used to generate the time distribution of 3H with pa-
rameters: 1/λ = 4.0 ns, σ = 0.6 ns, µ = 0.0 ns and a FOM = 0.6 keV−1. In order to fit
the analytical distribution to experimental data, a small routine that varies the input
parameters of the xcorr_calc code was developed. The routine uses the Nelder-Mead
(downhill-simplex) optimization method from the SciPy Python package [159]. The
cross-correlation equation (5.2) was fitted to the data with the same fixed λ, σ and µ
parameters. The FOM was left as a free parameter. The purpose of this comparison
is twofold: one to test the accuracy of the optimized code for the calculation of the
analytical equation xcorr_calc, and two to test the code that fits the equation to
experimental data. The results of the fit are shown in Figure B.4.

An excellent agreement between the xcorr_calc code and the Monte Carlo sim-
ulation can be seen. The minimization algrorithm reports a value for the FOM ϕ =

0.6006(12) keV−1. This agrees well with the input of the Monte Carlo code. The com-
parison shows that the optimized code for the calculation of equation (5.2) and the
associated fitting routine are able to reconstruct the FOM parameter generated by the
Monte Carlo code, by fixing all other parameters.
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Figure B.4: Fit of a 3H cross-correlation spectrum using equation (5.2), as calculated by the
xcorr_calc code, using the downhill-simplex optimization algorithm. The data points are
generated using the Monte Carlo code. The input FOM parameter is 0.6 keV−1.

The Monte Carlo simulated data could provide more information on how to optimally
fit experimental spectra. In the fit in Figure B.4, all parameters except the FOM were
fixed. It is interesting to test wether if all fit parameters are left to vary freely, their
correct values can be obtained. The artificial data has a great advantage here, because
the exact values of all parameters are known, and the cross-correlation distribution can
be obtained with a very high resolution for a high number of events.

The Monte Carlo code was used to simulate a measurement of 63Ni with parameters:
1/λ = 4.0 ns, σ = 0.6 ns, µ = 0.0 ns and a FOM ϕ = 0.5334 keV−1. The generated list
mode file was processed with the list_mode_analysis program with 31 ps bin size
and the total number of processed coincidences are 108. The obtained cross-correlation
distribution is with higher quality than what is experimentally possible, so fitting it
with equation 5.2 would give an upper bound on what accuracy can be expected from
the obtained optimal fit parameters. The distribution was fitted and all parameters were
left to vary. The best fit is shown in Figure B.5

There are several observations that can be made from the fit with all parameters left
as free parameters. The residuals of the fit show a slight pattern, but, nevertheless, most
residuals stll fall well within ±3σ. The parameters σ and µ that were optimized by the
minimization algorithm agree well with the input Monte Carlo parameters. The other
two parameters of interest, however, are significantly different than their true value.
The decay constant of the scintillator is 4% lower, and the FOM 5.5% lower, than what
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Figure B.5: Fit of a 63Ni cross-correlation spectrum using equation (5.2), as calculated by the
xcorr_calc code, using the downhill-simplex optimization algorithm. The data points are
generated using the Monte Carlo code. The input parameters are FOM = 0.5334 keV−1, 1/λ = 4

ns and σ = 0.6 ns.

was generated by the simulation. The fitting algorithm reports an 88.8% correlation
between the two parameters. In comparison, the correlation between the FOM and σ is
43.1%. From this comparison it seems that a fit of a single experimental cross-correlation
distribution will not be sufficient to obtain all of the distribution’s parameters. What
is posiible is to obtain the centroid and standard deviation of the gaussian response
function of the detector. The FOM and decay constant of the scintillator are highly
correlated, however, and one of the two parameters must be fixed from another method
or measurement in order to obtain the other.
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S U P P L E M E N TA RY I N F O R M AT I O N

c.1 available options of the list_mode_analysis software

The help output of the list_mode_analysis software is shown in listing C.1. On the
command line it is invoked by list_mode_analysis -h. The options with values in
pink should be input by the user. The options with a single dash can be stacked, thus
list_mode_analysis -c -s -P -e is equivalent to list_mode_analysis -csPe. The
order of the options does not matter except for the –paths option which should always
be last and it sholud contain all paths to folders containing list-mode files that need to
be analyzed.

Listing C.1: list_mode_analysis software – list of command line options. The options with
associated text in triangular brackets require a number or a list of numbers, e. g., –ref-channel
B or –sca 10 250. All other options are flags that are false by default.

Usage:
list_mode_analysis [OPTIONS] [PATH] CW

Rust program that can be used to analyze CAEN list -mode files

Positional arguments:
path Path to CAEN files folder
cw Coincidence window duration (default 200),

ns

Optional arguments:
-h,--help Show this help message and exit
-V,--version Show version
-d,--dt DT Dead -time duration (default 10 000),

ns
--energy -hist -size SIZE Gamma Energy upper limit (default

2^14), LSB
--energy -bin -size SIZE Gamma energy bin size (default 1),

LSB
-L,--hw HW Histogram size in channels (default:

1000)
-b,--bin -size SIZE Bin size in nanoseconds (default: 1)

, ns
-l,--time -limit TIME Break analysis early (default: 0 [

whole file]), s
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-g,--gamma -veto Gate on gamma channel (default:
false)

--gamma -only Analyze Gamma channel only (default:
false)

-c,--correct -acc Correct for accidental coincidences
(default: false)

-s,--show -time -hist Show time distribution histogram
-P,--show -pmt -energy Show the PMT energies histogram
-e,--show -energy -hist Show gamma energy spectrum
--hide -config Hide the output the configuration of

the run
-r,--hide -tdcr Hide TDCR output
-T,--triples Show time dist histogram for T

events
-D,--doubles Show time dist histogram for D

events
-i,--ignore -third Ignore the third channel. Set

reference and secodary
channels if using this option

-a,--asym -doubles One sided doubles histogram
--triple -veto Count only pure double coincidences

for histogram
-n,--no-live Disable live cps printing (prints

only end result)
--ref -channel CHANNEL Reference channel for time

difference histogram
--sec -channel CHANNEL Secondary channel for time

difference histogram
--sca -A CHANNEL PMT A energy range (default: 0

16385) , channels
--sca -B CHANNEL PMT B energy range (default: 0

16385) , channels
--sca -C CHANNEL PMT C energy range (default: 0

16385) , channels
--sca CHANNEL Gamma energy range (default: 0

16385) , channels
--gain GAINS Gain multiplier per channel (default

: 1 1 1 1)
--paths PATHS Paths to analyze. Should be last

option.
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c.2 additional figures for the cross-correlation method

Results from the Compton coincidences experimental setup on cross-correlation mea-
surements of Toluene+PPO (Figure C.1) and HionicFluor (Figure C.2) cocktails. Com-
pared to the UltimaGold and UltimaGold LLT cocktails, these two have a significantly
shorter prompt fluorescence decay constant, close to 2 ns.
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Figure C.1: Cross-correlation spectra D(∆t) of Toluene + PPO LS cocktail acquired by the
Compton coincidences method.

Hionic Fluor

5
6

7
8

Deposited energy, keV

−10
0

10

tA − tB , ns

0.00

0.04

0.08

0.12

0.16

Pr
ob

ab
ili

ty

0.00

0.04

0.08

0.12

0.16

Figure C.2: Cross-correlation spectraD(∆t) of HionicFluor LS cocktail acquired by the Compton
coincidences method.
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